IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp822-827.html
   My bibliography  Save this article

Modelling liquefied-natural-gas processes using highly accurate property models

Author

Listed:
  • Dauber, Florian
  • Span, Roland

Abstract

Accurate simulations are important for efficient design and operation of a process. Therefore, a precise representation of thermophysical properties using an adequate property model is necessary. The GERG-2008 by Kunz and Wagner [1] is the new reference equation of state for natural gases consisting of up to 21 specific compounds. It describes the gas and liquid phase as well as the super-critical region and the vapour–liquid equilibrium. In order to model LNG processes with the highest accuracy available, software available for the new equation is implemented into various common simulation tools. To ensure stable and consistent simulations, the GERG-2008 Property Package has been developed, which meets the CAPE-OPEN standard. The influence of property models on the simulation of the most important processes of the LNG value chain is investigated. Results show the expected advantages in accuracy for simulations using the new property model.

Suggested Citation

  • Dauber, Florian & Span, Roland, 2012. "Modelling liquefied-natural-gas processes using highly accurate property models," Applied Energy, Elsevier, vol. 97(C), pages 822-827.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:822-827
    DOI: 10.1016/j.apenergy.2011.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Hui & Zhao, Liang & Zhang, Songyuan & Wang, Aihua & Cai, Jiuju, 2013. "Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle," Energy, Elsevier, vol. 63(C), pages 10-18.
    2. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    3. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    4. Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems," Applied Energy, Elsevier, vol. 183(C), pages 43-60.
    5. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    6. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    7. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:822-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.