IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp386-394.html
   My bibliography  Save this article

Effects of operating parameters on nitrogen oxides emissions for a natural gas fueled homogeneous charged compression ignition engine (HCCI): Results from a thermodynamic model with detailed chemistry

Author

Listed:
  • Zheng, Junnian
  • Caton, Jerald A.

Abstract

Past numerical studies on natural gas HCCI engines have provided few thorough analyses of the effects of operating parameters on nitrogen oxides (referring to the mixture of nitric oxide and nitrogen dioxide). A single zone thermodynamic model with detailed chemical kinetics was used to determine the effect of operating parameters on nitrogen oxides emissions. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. The simulation was conducted for a modified 0.4l single cylinder engine, which possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75mm, respectively. Several sets of parametric studies were completed to investigate the effect of engine load (imep=200–600kPa), speed (600–3000RPM), equivalence ratio (0.3–1.0), EGR level (0–40%), temperature at IVC (390–460K), and fuel compositions (0–10% C2H6) on nitrogen oxides emissions. Contributions of different NOx mechanisms have been examined, and the thermal mechanism accounts for over 70% of the total NOx at most of the conditions. The results show significant changes in nitrogen oxides concentrations with varying engine operating conditions. These changes are shown to be strongly dependent on the chemical kinetics and the resulting differences in gas temperature profiles. For this particular study, 50% reduction in nitrogen oxides emissions could result from a load (imep) decrease from 300kPa to 200kPa, or an EGR level increase from 0% to 20%.

Suggested Citation

  • Zheng, Junnian & Caton, Jerald A., 2012. "Effects of operating parameters on nitrogen oxides emissions for a natural gas fueled homogeneous charged compression ignition engine (HCCI): Results from a thermodynamic model with detailed chemistry," Applied Energy, Elsevier, vol. 92(C), pages 386-394.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:386-394
    DOI: 10.1016/j.apenergy.2011.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    2. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    3. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    4. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).
    5. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    6. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    7. Zheng, Zhaolei & Lv, Zhumei, 2015. "A new skeletal chemical kinetic model of gasoline surrogate fuel with nitric oxide in HCCI combustion," Applied Energy, Elsevier, vol. 147(C), pages 59-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:386-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.