IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v8y1981i4p245-254.html
   My bibliography  Save this article

Variance of the ground temperature distribution

Author

Listed:
  • Sodha, M. S.
  • Bansal, N. K.
  • Seth, A. K.

Abstract

In order to account for the day-to-day variation in the solair temperature data, the coefficients in its Fourier series representation have been assumed to be time dependent. The variation in the numerical values of the coefficient being random, they have been modelled as a stochastic process. Explicit expressions for the mean and for the autocorrelation function of the ground temperature distribution have been obtained assuming the stochastic processes to be: (i) white noise (delta correlated) and (ii) Markov (exponentially correlated). Whilst the expression for the mean ground temperature distribution is found to be identical with that obtained by a periodic theory, the variance is found to decrease rapidly with depth.

Suggested Citation

  • Sodha, M. S. & Bansal, N. K. & Seth, A. K., 1981. "Variance of the ground temperature distribution," Applied Energy, Elsevier, vol. 8(4), pages 245-254, August.
  • Handle: RePEc:eee:appene:v:8:y:1981:i:4:p:245-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(81)90021-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelhak Kharbouch & Soukayna Berrabah & Mohamed Bakhouya & Jaafar Gaber & Driss El Ouadghiri & Samir Idrissi Kaitouni, 2022. "Experimental and Co-Simulation Performance Evaluation of an Earth-to-Air Heat Exchanger System Integrated into a Smart Building," Energies, MDPI, vol. 15(15), pages 1-22, July.
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:8:y:1981:i:4:p:245-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.