IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p3042-3050.html
   My bibliography  Save this article

Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C

Author

Listed:
  • Zamel, Nada
  • Litovsky, Efim
  • Shakhshir, Saher
  • Li, Xianguo
  • Kleiman, Jacob

Abstract

Carbon paper is commonly used as the gas diffusion layer (GDL) in polymer electrolyte membrane (PEM) fuel cells as it exhibits high chemical and mechanical durability. This diffusion medium is also anisotropic, which directly affects its transport properties and specifically the thermal conductivity. In this study, the in-plane thermal conductivity of the carbon paper GDL was determined using thermal diffusivity measurements for a temperature range from −20 to +120°C and four Teflon loadings (0, 5, 20 and 50wt.%). It is important to understand the effect of temperature on the thermal conductivity since PEM fuel cells are designed to operate under various temperatures depending on the application of use. Further, Teflon is used to change the hydrophobic properties of the carbon paper GDL with 20wt.% as the most widely used percentage. In this study, the Teflon loadings were chosen to gain a comprehensive understanding of the thermal resistance due to Teflon. In this study, a quasi-steady method was used to measure the thermal properties of the carbon paper; hence, the phase transformation in the presence of PTFE was investigated. The thermal conductivity decreases with an increase in temperature for all samples. The addition of as little as 5wt.% Teflon resulted in high thermal resistance decreasing the overall thermal conductivity of the sample. Further addition of Teflon did not have major effects on the thermal conductivity. For all treated samples, the thermal conductivity lies in the range of 10.1–14.7W/mK. Finally, empirical relations for the thermal diffusivity and conductivity with temperature were deduced.

Suggested Citation

  • Zamel, Nada & Litovsky, Efim & Shakhshir, Saher & Li, Xianguo & Kleiman, Jacob, 2011. "Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C," Applied Energy, Elsevier, vol. 88(9), pages 3042-3050.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:3042-3050
    DOI: 10.1016/j.apenergy.2011.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    2. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    3. Hwang, Jenn-Jiang, 2013. "Thermal control and performance assessment of a proton exchanger membrane fuel cell generator," Applied Energy, Elsevier, vol. 108(C), pages 184-193.
    4. Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
    5. Lee, F.C. & Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L & Lyth, S.M. & Pourkashanian, M., 2022. "Alternative architectures and materials for PEMFC gas diffusion layers: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    7. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.
    8. Tang, Hong-Yue & Santamaria, Anthony D. & Bachman, John & Park, Jae Wan, 2013. "Vacuum-assisted drying of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 107(C), pages 264-270.
    9. Gao, Jubao & Liu, Yida & Hoshino, Yu & Inoue, Gen, 2019. "Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    11. Liu, Jiawen & Shin, Seungho & Um, Sukkee, 2019. "Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications," Renewable Energy, Elsevier, vol. 139(C), pages 279-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:3042-3050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.