IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3357-3369.html
   My bibliography  Save this article

Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina

Author

Listed:
  • Zimmerman, William B.
  • Zandi, Mohammad
  • Hemaka Bandulasena, H.C.
  • Tesař, Václav
  • James Gilmour, D.
  • Ying, Kezhen

Abstract

This study was conducted to test the feasibility of growing microalgae on steel plant exhaust gas, generated from the combustion of offgases from steel processing, which has a high CO2 content. Two field trials of batch algal biomass growth, mediated by microbubble transfer processes in an airlift loop bioreactor showed only steady growth of biomass with 100% survival rate. The gas analysis of CO2 uptake in the 2200L bioreactor showed a specific uptake rate of 0.1g/L/h, an average 14% of the CO2 available in the exhaust gas with a 23% composition of CO2. This uptake led to a steady production of chlorophyll and total lipid constituency in the bioreactor, and an accelerating exponential growth rate of biomass, with a top doubling time of 1.8days. The gas analysis also showed anti-correlation of CO2 uptake and O2 production, which along with the apparent stripping of the O2 to the equilibrium level by the microbubbles, strongly suggests that the bioreactor is not mass transfer limited, nor O2 inhibited. Removing O2 inhibition results in high growth rates and high density of biomass.

Suggested Citation

  • Zimmerman, William B. & Zandi, Mohammad & Hemaka Bandulasena, H.C. & Tesař, Václav & James Gilmour, D. & Ying, Kezhen, 2011. "Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina," Applied Energy, Elsevier, vol. 88(10), pages 3357-3369.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3357-3369
    DOI: 10.1016/j.apenergy.2011.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pires, José C.M. & Alvim-Ferraz, Maria C.M. & Martins, Fernando G., 2017. "Photobioreactor design for microalgae production through computational fluid dynamics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 248-254.
    2. Pratik Devang Desai & Michael John Hines & Yassir Riaz & William B. Zimmerman, 2018. "Resonant Pulsing Frequency Effect for Much Smaller Bubble Formation with Fluidic Oscillation," Energies, MDPI, vol. 11(10), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    2. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    3. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    4. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    5. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    6. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    7. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    8. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    9. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    10. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    11. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    12. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    13. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    14. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    15. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    16. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    17. Geada, Pedro & Rodrigues, Rui & Loureiro, Luís & Pereira, Ricardo & Fernandes, Bruno & Teixeira, José A. & Vasconcelos, Vítor & Vicente, António A., 2018. "Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 656-668.
    18. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    19. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    20. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3357-3369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.