IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i3p894-900.html
   My bibliography  Save this article

Computation of surface radiation and natural convection in a heated horticultural greenhouse

Author

Listed:
  • Mezrhab, Ahmed
  • Elfarh, Larbi
  • Naji, Hassan
  • Lemonnier, D.

Abstract

This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure-velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 103-106. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.

Suggested Citation

  • Mezrhab, Ahmed & Elfarh, Larbi & Naji, Hassan & Lemonnier, D., 2010. "Computation of surface radiation and natural convection in a heated horticultural greenhouse," Applied Energy, Elsevier, vol. 87(3), pages 894-900, March.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:3:p:894-900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00214-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mezrhab, A. & Bouali, H. & Amaoui, H. & Bouzidi, M., 2006. "Computation of combined natural-convection and radiation heat-transfer in a cavity having a square body at its center," Applied Energy, Elsevier, vol. 83(9), pages 1004-1023, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    2. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    3. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    4. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ying-Ying & Wu, Shuang-Ying & Xiao, Lan, 2018. "Heat dissipation characteristics from photovoltaic cells within the partitioned or non-partitioned glazed cavity to the windy environment," Renewable Energy, Elsevier, vol. 127(C), pages 642-652.
    2. Hernández-López, I. & Xamán, J. & Chávez, Y. & Hernández-Pérez, I. & Alvarado-Juárez, R., 2016. "Thermal energy storage and losses in a room-Trombe wall system located in Mexico," Energy, Elsevier, vol. 109(C), pages 512-524.
    3. Wen-He Zhou & Lei Sun & Si-Si Li & Jian-Yun Wu, 2023. "Radiation Effect on Heat Transfer in Narrow Cavities," Energies, MDPI, vol. 16(11), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:3:p:894-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.