IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i11p3393-3400.html
   My bibliography  Save this article

Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields

Author

Listed:
  • Yan, G.
  • Gu, Y.

Abstract

Due to the advantages of the flexibility and economics in exploration and production of offshore liquefied natural gas (LNG), the floating production storage and offloading unit for liquefied natural gas (LNG-FPSO) has attracted wide attentions in recent years. The offloading system for LNG transportation from LNG-FPSO to LNG carrier is one of the most important parts in LNG-FPSO. The influences of the main parameters such as the mass flow rate and the height difference of the pipeline. on the performance of LNG offloading in offshore associated gas fields were investigated. A model based on a typical offshore LNG offloading system was first established and simulations were conducted. The governing equations were then used to evaluate the effects of parameters together with the simulation results. It was found that there was an economic mass flow rate for practical design on balance of the cost in pump head and BOG. The height difference of the pipeline must be considered for the increase of required pump head and harms from pressure changes. The effects of other parameters on the performance of LNG transportation such as diameter, equivalent roughness of pipeline and LNG compositions were also discussed.

Suggested Citation

  • Yan, G. & Gu, Y., 2010. "Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields," Applied Energy, Elsevier, vol. 87(11), pages 3393-3400, November.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3393-3400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00153-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes," Applied Energy, Elsevier, vol. 86(6), pages 793-804, June.
    2. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    3. Tangen, Grethe & Mølnvik, Mona J., 2009. "Scenarios for remote gas production," Applied Energy, Elsevier, vol. 86(12), pages 2681-2689, December.
    4. Aspelund, Audun & Tveit, Steinar P. & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 3: The combined carrier and onshore storage," Applied Energy, Elsevier, vol. 86(6), pages 805-814, June.
    5. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    2. Yude Shao & Yoonhyeok Lee & Hokeun Kang, 2019. "Dynamic Optimization of Boil-Off Gas Generation for Different Time Limits in Liquid Natural Gas Bunkering," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    4. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    2. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    3. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    4. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    5. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    6. Jordán, Pérez Sánchez & Javier Eduardo, Aguillón Martínez & Zdzislaw, Mazur Czerwiec & Alan Martín, Zavala Guzmán & Liborio, Huante Pérez & Jesús Antonio, Flores Zamudio & Mario Román, Díaz Guillén, 2019. "Techno-economic analysis of solar-assisted post-combustion carbon capture to a pilot cogeneration system in Mexico," Energy, Elsevier, vol. 167(C), pages 1107-1119.
    7. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    8. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    9. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    10. Simon Roussanaly & Han Deng & Geir Skaugen & Truls Gundersen, 2021. "At what Pressure Shall CO 2 Be Transported by Ship? An in-Depth Cost Comparison of 7 and 15 Barg Shipping," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    12. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    13. Li, Gang & Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Huang, Ning-Sheng & Zhang, Yu & Tang, Liang-Guang, 2013. "The use of dual horizontal wells in gas production from hydrate accumulations," Applied Energy, Elsevier, vol. 112(C), pages 1303-1310.
    14. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
    15. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    16. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    17. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
    18. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    19. Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
    20. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:11:p:3393-3400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.