IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i9p878-895.html
   My bibliography  Save this article

Energy efficiency enhancement of natural rubber smoking process by flow improvement using a CFD technique

Author

Listed:
  • Tekasakul, Perapong
  • Promtong, Machimontorn

Abstract

A non-uniform flow and large temperature variation in a natural rubber smoking-room cause an inefficient use of energy. Flow uniformity and temperature variation can be improved by using a computational fluid dynamics (CFD) simulation. The effects of the size, position and number of gas supply ducts and ventilating lids which were at the inlets and the outlets of the smoking-room were investigated. The optimal rubber smoking-room of size 2.6 m x 6.2 m x 3.6 m contains 154 50 mm-diameter hot gas supply ducts, and four 0.25 x 0.25 m and four 0.25 x 0.20 m ventilating lids. The velocity distribution of this model in the rubber-hanging area was rather uniform. The average monitoring temperature of 54 positions was 62.1 °C. This model could reduce the temperature variation by a factor of three from the original room model, i.e., from 15 to 5.5 °C. In a further study, the heat input of an appropriate room model was finely adjusted to obtain a suitable temperature (60 °C) for the smoking process. It was found that an appropriate heat supply at this temperature is 11 kW. At this rate, the temperature variation is 5.3 °C. This improved model should help the rubber smoking cooperatives to achieve at least a 31.25% saving in energy.

Suggested Citation

  • Tekasakul, Perapong & Promtong, Machimontorn, 2008. "Energy efficiency enhancement of natural rubber smoking process by flow improvement using a CFD technique," Applied Energy, Elsevier, vol. 85(9), pages 878-895, September.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:9:p:878-895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00032-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    2. Niamsuwan, Sathit & Kittisupakorn, Paisan & Suwatthikul, Ajaree, 2015. "Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant," Applied Energy, Elsevier, vol. 156(C), pages 465-477.
    3. Dejchanchaiwong, Racha & Tirawanichakul, Yutthana & Tirawanichakul, Supawan & Kumar, Anil & Tekasakul, Perapong, 2017. "Techno-economic assessment of forced-convection rubber smoking room for rubber cooperatives," Energy, Elsevier, vol. 137(C), pages 152-159.
    4. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    5. Dejchanchaiwong, Racha & Kumar, Anil & Tekasakul, Perapong, 2019. "Performance and economic analysis of natural convection based rubber smoking room for rubber cooperatives in Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 233-242.
    6. Sonthikun, Sonthawi & Chairat, Phaochinnawat & Fardsin, Kitti & Kirirat, Pairoj & Kumar, Anil & Tekasakul, Perapong, 2016. "Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation," Renewable Energy, Elsevier, vol. 92(C), pages 185-191.
    7. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:9:p:878-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.