IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i8p694-707.html
   My bibliography  Save this article

Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A

Author

Listed:
  • Ge, Y.T.
  • Cropper, R.

Abstract

This paper describes the analysis and performance comparison of a display cabinet system using refrigerant R404A and its substitute refrigerant R22. The model of the display cabinet is developed at steady state and integrated from three main component sub-models, air-cooling finned-tube evaporator, air curtain and display cabinet body. The evaporator model is built up based on the distributed method, which can simulate the heat exchangers with different circuit structures. The frost effect on the performance of the evaporator is included in the model. The correlations for the heat transfer and pressure drop calculations of both air and refrigerant sides are purposely selected in the evaporator model. In addition, the evaporator model has been validated with experimental results at steady states from published literature. Several correlated functions from the detailed numerical solution are used for the model of the air curtain. Some simplifications are also utilized for the model of display cabinet body. The performance simulation and comparison of the display cabinet using refrigerants R404A and R22 are carried out at different indoor ambient conditions especially at varied ambient air humidity to mimic the actual indoor space conditions in super stores. Some significant results such as the comparison of cooling load requirement for different refrigerant display cases have been obtained from the simulation, which can significantly contribute to the optimal cabinet design and operating analysis.

Suggested Citation

  • Ge, Y.T. & Cropper, R., 2008. "Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A," Applied Energy, Elsevier, vol. 85(8), pages 694-707, August.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:8:p:694-707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00027-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alzuwaid, F.A. & Ge, Y.T. & Tassou, S.A. & Sun, J., 2016. "The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation," Applied Energy, Elsevier, vol. 180(C), pages 76-85.
    2. Megdouli, K. & Ejemni, N. & Nahdi, E. & Mhimid, A. & Kairouani, L., 2017. "Thermodynamic analysis of a novel ejector expansion transcritical CO2/N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures," Energy, Elsevier, vol. 128(C), pages 586-600.
    3. Ge, Y.T. & Tassou, S.A. & Santosa, I. Dewa & Tsamos, K., 2015. "Design optimisation of CO2 gas cooler/condenser in a refrigeration system," Applied Energy, Elsevier, vol. 160(C), pages 973-981.
    4. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    5. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    6. Han, Zongwei & Zhang, Yanqing & Meng, Xin & Liu, Qiankun & Li, Weiliang & Han, Yu & Zhang, Yanhong, 2016. "Simulation study on the operating characteristics of the heat pipe for combined evaporative cooling of computer room air-conditioning system," Energy, Elsevier, vol. 98(C), pages 15-25.
    7. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    8. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.

    More about this item

    Keywords

    Refrigeration R404A and R22 Display cabinets Simulation and validation;

    JEL classification:

    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:8:p:694-707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.