IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i7p618-624.html
   My bibliography  Save this article

Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle

Author

Listed:
  • Ge, Yanlin
  • Chen, Lingen
  • Sun, Fengrui

Abstract

The performance of an air standard Otto-cycle is analyzed using finite-time thermodynamics. In the irreversible cycle model, the non-linear relation between the specific heat of the working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and the heat-transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are indicated by numerical examples. Moreover, the effects of internal irreversibility, heat-transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidance for the design of practical internal-combustion engines.

Suggested Citation

  • Ge, Yanlin & Chen, Lingen & Sun, Fengrui, 2008. "Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle," Applied Energy, Elsevier, vol. 85(7), pages 618-624, July.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:7:p:618-624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00151-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    2. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
    3. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    4. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:7:p:618-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.