IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i3p228-238.html
   My bibliography  Save this article

Optimization criteria for the important parameters of an irreversible Otto heat-engine

Author

Listed:
  • Chen, Jincan
  • Zhao, Yingru
  • He, Jizhou

Abstract

An irreversible cycle model of an Otto heat-engine is established, in which the main irreversibilities result from the non-isentropic compression and expansion processes; finite-time processes and heat loss through the cylinder wall are taken into account. The power output and efficiency of the cycle are derived. The curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found from the curves that there are optimal values of the compression ratio at which the power output and efficiency attain their maxima. Moreover, the maximum power-output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency, compression ratio, and temperatures of the working substance are obtained.

Suggested Citation

  • Chen, Jincan & Zhao, Yingru & He, Jizhou, 2006. "Optimization criteria for the important parameters of an irreversible Otto heat-engine," Applied Energy, Elsevier, vol. 83(3), pages 228-238, March.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:3:p:228-238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00024-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    2. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:3:p:228-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.