IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v76y2003i1-3p189-196.html
   My bibliography  Save this article

Household energy use and the environment--a conflicting issue

Author

Listed:
  • Anker-Nilssen, Per

Abstract

The concept of sustainable economic development, parallel to a further improvement in the quality of life, conflicts with energy-driven changes in life-styles. In order to gain time, convenience, comfort and mobility, households are steadily increasing their energy use, neglecting economic and environmental concerns. This paper scrutinises Norwegian households' use of energy and the consequences of price (and climate) changes. Less well-off households were found vulnerable to energy-price hikes: households' attitudes towards energy use and their actual behaviour were inconsistent. Any measures to curb end-users energy demand must consider, besides distribution effects, that energy substitutes not only for capital and labour, but also for time and space.

Suggested Citation

  • Anker-Nilssen, Per, 2003. "Household energy use and the environment--a conflicting issue," Applied Energy, Elsevier, vol. 76(1-3), pages 189-196, September.
  • Handle: RePEc:eee:appene:v:76:y:2003:i:1-3:p:189-196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00056-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Runa Nesbakken, 1998. "Residential Energy Consumption for Space Heating in Norwegian Households A Discrete-Continuous Choice Approach," Discussion Papers 231, Statistics Norway, Research Department.
    2. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    3. Grubb, M. J., 1990. "Communication Energy efficiency and economic fallacies," Energy Policy, Elsevier, vol. 18(8), pages 783-785, October.
    4. Khazzoom, J. Daniel & Shelby, Michael & Wolcott, Rob, 1990. "The conflict between energy conservation and environmental policy in the US transportation sector," Energy Policy, Elsevier, vol. 18(5), pages 456-458, June.
    5. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    6. L.G. Brookes, 1990. "Energy Efficiency and The Greenhouse Effect," Energy & Environment, , vol. 1(4), pages 318-333, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    3. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    4. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    5. Angel Andrade & Juan Zapata-Mina & Alvaro Restrepo, 2023. "Assessment of the Correlation between Energy Rating Labeling Regulations and Performance Metrics for Residential Air Conditioning Units: Case Study Variable Type Air Conditioners," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 432-441, September.
    6. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    7. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    8. Hélène Joachain & Frédéric Klopfert, 2011. "Emerging trend of complementary currencies systems as policy instrument for environmental purposes: changes ahead?," Working Papers CEB 11-047, ULB -- Universite Libre de Bruxelles.
    9. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    10. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    11. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    12. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    13. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.
    14. Feiyu Chen & Fang Wang & Jing Hou, 2020. "Individual Preference Framework or Group Preference Framework? Which Will Regulate the Impact Path of Product Facilities on Residents’ Waste-Sorting Behavior Better," IJERPH, MDPI, vol. 17(7), pages 1-19, March.
    15. Acosta-Michlik, Lilibeth & Lucht, Wolfgang & Bondeau, Alberte & Beringer, Tim, 2011. "Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2791-2809, August.
    16. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    17. Brand, Christian & Goodman, Anna & Rutter, Harry & Song, Yena & Ogilvie, David, 2013. "Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel," Applied Energy, Elsevier, vol. 104(C), pages 158-169.
    18. Tu, Chuang & Mu, Xianzhong & Chen, Jian & Kong, Li & Zhang, Zheng & Lu, Yutong & Hu, Guangwen, 2021. "Study on the interactive relationship between urban residents’ expenditure and energy consumption of production sectors," Energy Policy, Elsevier, vol. 157(C).
    19. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    2. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    3. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    4. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    5. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    6. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    7. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    8. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    9. Arno E. Scheepens & Joost G. Vogtländer, 2018. "Insulation or Smart Temperature Control for Domestic Heating: A Combined Analysis of the Costs, the Eco-Costs, the Customer Perceived Value, and the Rebound Effect of Energy Saving," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    10. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    11. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    12. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    13. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    14. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    15. Greene, David L. & Welch, Jilleah G., 2018. "Impacts of fuel economy improvements on the distribution of income in the U.S," Energy Policy, Elsevier, vol. 122(C), pages 528-541.
    16. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    17. Al-Mansour, Fouad, 2011. "Energy efficiency trends and policy in Slovenia," Energy, Elsevier, vol. 36(4), pages 1868-1877.
    18. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
    19. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    20. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:76:y:2003:i:1-3:p:189-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.