IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v69y2001i1p19-27.html
   My bibliography  Save this article

Heat-pump/energy-store using silica gel and water as a working pair

Author

Listed:
  • Tahat, M. A.

Abstract

The possibilty of using silica gel and water as a reversible pair, in a thermochemical heat-pump/energy-store has been studied theoretically and experimentally during both heating and cooling modes. With silica gel absorbing water by 25±2% of the dry silica gel's weight, the heat of adsorption and the heat of wetting of 2712.43±30 kJ/kg SiO2 and 94.43± 15 kJ/kg SiO2 have been achieved respectively. The concentration rate for the two reaction pair was investigated and a general relationship that governed the adsorption rate with time has been deduced.

Suggested Citation

  • Tahat, M. A., 2001. "Heat-pump/energy-store using silica gel and water as a working pair," Applied Energy, Elsevier, vol. 69(1), pages 19-27, May.
  • Handle: RePEc:eee:appene:v:69:y:2001:i:1:p:19-27
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(01)00008-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, N. & Wang, R.Z. & Lu, Z.S. & Wang, L.W. & Ishugah, T.F., 2014. "Evaluation of a three-phase sorption cycle for thermal energy storage," Energy, Elsevier, vol. 67(C), pages 468-478.
    2. Rickard Erlund & Ron Zevenhoven, 2020. "Simulations on Design and System Performance of Building Heating Boosted by Thermal Energy Storage (TES) with Magnesium Hydro Carbonates/Silica Gel," Energies, MDPI, vol. 13(17), pages 1-14, September.
    3. Rickard Erlund & Ron Zevenhoven, 2018. "Hydration of Magnesium Carbonate in a Thermal Energy Storage Process and Its Heating Application Design," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    5. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:69:y:2001:i:1:p:19-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.