IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v63y1999i2p101-113.html
   My bibliography  Save this article

Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique

Author

Listed:
  • Yamamoto, H.
  • Yamaji, K.
  • Fujino, J.

Abstract

Bioenergy is expected to become one of the key energy resources for global sustainable development. However, bioenergy cannot be infinite, because the land area available for biomass production is limited and a certain amount of biomass must be reserved for food and materials. The purpose of this study is to evaluate global bioenergy potential: for this purpose, the authors developed a global land-use and energy model (GLUE) formulated using a SD (System Dynamics) technique. Through a simulation, the following results were obtained. (1) There will be a certain potential for energy crops harvested from surplus arable land in the developed regions of the world. However, care must be taken because the potential is sensitive to the global food supply and demand. (2) There will be a large bioenergy potential for biomass residues, such as cereal-harvesting residues, animal dung, roundwood felling residues, and timber scrap. The ultimate bioenergy potential, from all the biomass residues, will be 277 EJ/yr in A.D. 2100 in the world. (3) The mature-forest area in the developing regions decreases from 2.1 billion ha in 1990 to 0.8 billion ha in 2100, although it is assumed that the felling area is reforested completely after A.D. 2025. Thus, there will not be much room to obtain more fuelwood from forests in the developing regions.

Suggested Citation

  • Yamamoto, H. & Yamaji, K. & Fujino, J., 1999. "Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique," Applied Energy, Elsevier, vol. 63(2), pages 101-113, June.
  • Handle: RePEc:eee:appene:v:63:y:1999:i:2:p:101-113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00020-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Huntley & Donald Redalje, 2007. "CO 2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 573-608, May.
    2. Tina D. Beuchelt & Michael Nassl, 2019. "Applying a Sustainable Development Lens to Global Biomass Potentials," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    3. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    4. Chang, Hung-Hao & Chen, Yu-Hui, 2011. "Are participators in the land retirement program likely to grow energy crops?," Applied Energy, Elsevier, vol. 88(9), pages 3183-3188.
    5. Kenneth Gillingham & Steven Smith & Ronald Sands, 2008. "Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 675-701, August.
    6. van Ackere, Ann & Ruud, Morten & Davidsen, Paal, 2005. "Managing a reservoir-based hydro-energy plant: building understanding in the buy and sell decisions in a changing environment," Energy Policy, Elsevier, vol. 33(7), pages 939-947, May.
    7. Yamamoto, Hiromi & Yamaji, Kenji & Fujino, Junichi, 2000. "Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model," Applied Energy, Elsevier, vol. 66(4), pages 325-337, August.
    8. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    9. Prespa Ymeri & Csaba Gyuricza & Csaba Fogarassy, 2020. "Farmers’ Attitudes Towards the Use of Biomass as Renewable Energy—A Case Study from Southeastern Europe," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    10. Dorel Dusmanescu & Jean Andrei & Gheorghe H. Popescu & Elvira Nica & Mirela Panait, 2016. "Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region," Energies, MDPI, vol. 9(9), pages 1-19, August.
    11. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    12. Ruth Offermann & Thilo Seidenberger & Daniela Thrän & Martin Kaltschmitt & Sergey Zinoviev & Stanislav Miertus, 2011. "Assessment of global bioenergy potentials," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 103-115, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    2. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    3. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    4. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    5. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    6. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    7. Thorpe, Sally & Sterland, Barry & Jones, Barry P. & Wallace, Nancy A. & Pugsley, Sally-Ann, 1991. "World energy markets and uncertainty to the year 2100: implications for greenhouse policy," Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) Archive 316175, Australian Government, Australian Bureau of Agricultural and Resource Economics and Sciences.
    8. Debyani Ghosh, 2008. "Renewable Energy Strategies for Indian Power Sector," Working Papers id:1715, eSocialSciences.
    9. Tschang, F. Ted & Dowlatabadi, Hadi, 1995. "A Bayesian technique for refining the uncertainty in global energy model forecasts," International Journal of Forecasting, Elsevier, vol. 11(1), pages 43-61, March.
    10. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    11. Keller, Klaus & Miltich, Louise I. & Robinson, Alexander & Tol, Richard S.J., 2007. "How Overconfident are Current Projections of Anthropogenic Carbon Dioxide Emissions?," Climate Change Modelling and Policy Working Papers 9321, Fondazione Eni Enrico Mattei (FEEM).
    12. Kejun Jiang & Xiulian Hu, 2006. "Energy demand and emissions in 2030 in China: scenarios and policy options," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 233-250, September.
    13. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    14. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun D. & Leung, L. Ruby & Skalski, John R. & Cooke, Steven J., 2019. "On the variable effects of climate change on Pacific salmon," Ecological Modelling, Elsevier, vol. 397(C), pages 95-106.
    15. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    16. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    17. Chaturvedi, Vaibhav & Eom, Jiyong & Clarke, Leon E. & Shukla, Priyadarshi R., 2014. "Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework," Energy Policy, Elsevier, vol. 64(C), pages 226-242.
    18. Nair Rajesh & P.R. Shukla & Manmohan Kapshe & Amit Garg & Ashish Rana, 2003. "Analysis of Long-term Energy and Carbon Emission Scenarios for India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(1), pages 53-69, March.
    19. Persson, Urban & Münster, Marie, 2016. "Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review," Energy, Elsevier, vol. 110(C), pages 116-128.
    20. I. Mouratiadou & M. Bevione & D. L. Bijl & L. Drouet & M. Hejazi & S. Mima & M. Pehl & G. Luderer, 2018. "Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment," Climatic Change, Springer, vol. 147(1), pages 91-106, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:63:y:1999:i:2:p:101-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.