IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v62y1999i4p253-266.html
   My bibliography  Save this article

Evaluation of dichroic material for enhancing light pipe/natural ventilation and daylighting in an integrated system

Author

Listed:
  • Elmualim, A. A.
  • Smith, S.
  • Riffat, S. B.
  • Shao, L.

Abstract

Integration of natural ventilation and daylighting in a single installation would make both technologies more attractive. One method for the integration is the use of concentric light pipe and ventilation stack. By constructing the light pipe using dichroic materials, the infrared part of the solar radiation is allowed to be transmitted to the stack but the visible light is guided by the light pipe into a room. The heat gain to the interior can be reduced and the thermal stack effect strengthened. Work presented here involved the experimental and computational evaluation of dichroic materials for enhancing both natural stack ventilation and daylighting. The transmittance of a dichroic light pipe was found to be similar to that of a light pipe with a 95% specular reflectance. The infra-red radiation transmitted through the dichroic material into a passive stack was found to enhance the natural ventilation flow by up to 14%. The effect is greater in summer than in winter, which is highly desirable as there is often a lack of driving force for natural stack ventilation in summer.

Suggested Citation

  • Elmualim, A. A. & Smith, S. & Riffat, S. B. & Shao, L., 1999. "Evaluation of dichroic material for enhancing light pipe/natural ventilation and daylighting in an integrated system," Applied Energy, Elsevier, vol. 62(4), pages 253-266, April.
  • Handle: RePEc:eee:appene:v:62:y:1999:i:4:p:253-266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00014-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Littlefair, P.J. & Aizlewood, M.E. & Birtles, A.B., 1994. "The performance of innovative daylighting systems," Renewable Energy, Elsevier, vol. 5(5), pages 920-934.
    2. Rogora, A. & Palermo, G., 1994. "New component for daylighting: first italian application of a sun duct," Renewable Energy, Elsevier, vol. 5(5), pages 974-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kocifaj, M., 2009. "Efficient tubular light guide with two-component glazing with Lambertian diffuser and clear glass," Applied Energy, Elsevier, vol. 86(7-8), pages 1031-1036, July.
    2. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    3. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.
    2. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    3. Al-Sallal, Khaled A., 2007. "Testing glare in universal space design studios in Al-Ain, UAE desert climate and proposed improvements," Renewable Energy, Elsevier, vol. 32(6), pages 1033-1044.
    4. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    5. Freewan, Ahmed A. & Shao, Li & Riffat, Saffa, 2009. "Interactions between louvers and ceiling geometry for maximum daylighting performance," Renewable Energy, Elsevier, vol. 34(1), pages 223-232.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:62:y:1999:i:4:p:253-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.