IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v59y1998i2-3p175-185.html
   My bibliography  Save this article

Japanese automotive transportation sector's impact upon Global warming

Author

Listed:
  • Imaseki, Takashi

Abstract

Automobiles are still increasing in number in Japan. If this continues, CO2 emissions in this sector may increase through the first half of the 21st century. Consequently, a study of measures for reducing these CO2 emissions is essential. In this paper, possible automotive technologies, improvements in fuel consumption and the introduction of electric vehicles are discussed. These measures are then evaluated for the Japanese case. Furthermore, market penetration of these technologies is evaluated, using life-cycle cost analysis based on initial cost and annual fuel cost. It is concluded that reducing CO2 emissions to 1995 levels by 2010 is possible. This would require the simultaneous implementation of fuel-consumption improvements and the introduction of electric vehicles. However, automotive consumers would be reluctant to accept these technologies, particularly electric vehicles, because of their high purchase-price and low benefits in terms of operating economy. Acceptance will require financial and institutional support from the public sector in introducing these automotive technologies into the Japanese transportation sector.

Suggested Citation

  • Imaseki, Takashi, 1998. "Japanese automotive transportation sector's impact upon Global warming," Applied Energy, Elsevier, vol. 59(2-3), pages 175-185, February.
  • Handle: RePEc:eee:appene:v:59:y:1998:i:2-3:p:175-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(98)00013-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Dean & Peter Hoeller, 1992. "Costs of Reducing CO2 Emissions: Evidence from Six Global Models," OECD Economics Department Working Papers 122, OECD Publishing.
    2. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinxin & Kobayashi, Noriyuki & He, Maogang & Wang, Jingfu, 2016. "An organic group contribution approach to radiative efficiency estimation of organic working fluid," Applied Energy, Elsevier, vol. 162(C), pages 1205-1210.
    2. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeger, William K., 1995. "The welfare cost of a global carbon tax when tax revenues are recycled," Resource and Energy Economics, Elsevier, vol. 17(1), pages 47-67, May.
    2. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    3. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    4. Babiker, Mustafa & Reilly, John & Ellerman, Denny, 2000. "Japanese Nuclear Power and the Kyoto Agreement," Journal of the Japanese and International Economies, Elsevier, vol. 14(3), pages 169-188, September.
    5. Tomáš Brzobohatý & Petr Janský, 2010. "Impact of CO 2 Emissions Reductions on Firms’ Finance in an Emerging Economy: The Case of the Czech Republic," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 17(4), pages 725-736, December.
    6. Kverndokk,S. & Rosendahl,E., 2000. "CO2 mitigation costs and ancillary benefits in the Nordic countries, the UK and Ireland : a survey," Memorandum 34/2000, Oslo University, Department of Economics.
    7. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    8. Xavier Labandeira & Miguel Rodriguez, 2004. "The Effects of a Sudden CO2 reduction in Spain," Others 0412001, University Library of Munich, Germany.
    9. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    10. Yamamoto, H. & Yamaji, K. & Fujino, J., 1999. "Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique," Applied Energy, Elsevier, vol. 63(2), pages 101-113, June.
    11. Zhang, Zhong Xiang, 1998. "Macroeconomic Effects of CO2 Emission Limits: A Computable General Equilibrium Analysis for China," Journal of Policy Modeling, Elsevier, vol. 20(2), pages 213-250, April.
    12. Samuel Fankhauser & Nicholas Stern, 2016. "Climate change, development, poverty and economics," GRI Working Papers 253, Grantham Research Institute on Climate Change and the Environment.
    13. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    14. Klinge Jacobsen, Henrik & Morthorst, Poul Erik & Nielsen, Lise & Stephensen, Peter, 1996. "Sammenkobling af makroøkonomiske og teknisk-økonomiske modeller for energisektoren. Hybris [Integration of bottom-up and top-down models for the energy system: A practical case for Denmark]," MPRA Paper 65676, University Library of Munich, Germany.
    15. Kejun Jiang & Tsuneyuki Morita & Toshihiko Masui & Yuzuru Matsuoka, 2000. "Global long-term greenhouse gas mitigation emission scenarios based on AIM," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 239-254, June.
    16. Snorre Kverndokk & Lars Lindholt & Knut Rosendahl, 2000. "Stabilization of CO 2 concentrations: mitigation scenarios using the Petro model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 195-224, June.
    17. Domenico Morrone & Rosamartina Schena & Danilo Conte & Candida Bussoli & Angeloantonio Russo, 2022. "Between saying and doing, in the end there is the cost of capital: Evidence from the energy sector," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 390-402, January.
    18. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    19. Kejun Jiang & Xiulian Hu, 2006. "Energy demand and emissions in 2030 in China: scenarios and policy options," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 233-250, September.
    20. Paul Ekins, 1995. "Rethinking the costs related to global warming: A survey of the issues," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 231-277, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:59:y:1998:i:2-3:p:175-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.