IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016490.html
   My bibliography  Save this article

State-of-health estimation for lithium-ion batteries based on Kullback–Leibler divergence and a retentive network

Author

Listed:
  • Chen, Guanxu
  • Yang, Fangfang
  • Peng, Weiwen
  • Fan, Yuqian
  • Lyu, Ximin

Abstract

Accurate state-of-health (SOH) estimation is crucial for the lithium-ion battery industry, as it underpins the safety, durability, and reliability of lithium-ion batteries. Currently, most researchers use various methods of health indicator (HI) extraction for the SOH estimation of batteries. However, these methods may require certain expertise and prior knowledge to achieve accurate modeling, being affected by measurement noise and other factors. To solve the abovementioned problems, three Kullback–Leibler (KL) divergence features based on partial voltage sequences are proposed as new HIs that are independent of prior knowledge and strongly correlated with SOH. Moreover, a modified retentive network is proposed to enhance SOH estimation accuracy and better utilize HIs than traditional deep learning methods, which have high training costs and insufficient accuracy. To ensure consistent extraction of KL divergence features across various experimental conditions and time intervals, a B-spline algorithm is utilized for interpolation. The effectiveness of the proposed method is validated through analysis of Pearson correlation coefficients and experiments conducted in four dimensions. Additionally, the potential of using the proposed method to compress data on the cloud-side is explored.

Suggested Citation

  • Chen, Guanxu & Yang, Fangfang & Peng, Weiwen & Fan, Yuqian & Lyu, Ximin, 2024. "State-of-health estimation for lithium-ion batteries based on Kullback–Leibler divergence and a retentive network," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016490
    DOI: 10.1016/j.apenergy.2024.124266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.