IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924013138.html
   My bibliography  Save this article

Performance assessment of multiple-types co-located storage for uncertainty mitigation in integrated electric-gas system using generalized polynomial chaos

Author

Listed:
  • Chen, Houhe
  • Shao, Junyan
  • Jiang, Tao
  • Li, Xue
  • Zhang, Rufeng

Abstract

Prudent and sensible deployment of local storage may unlock the potential of mitigating the adverse impact, especially addressing the challenge of uncertainty from independent renewable energy deployment. This paper designs a photovoltaic battery system (PVBS) and a gas turbine hydrogen tank system (GTTS) as the local energy communities to mitigate the uncertainty in the integrated electric-gas systems (IEGS). Firstly, this paper quantified the contribution of the co-located energy storage and remodeled the output of PVBS and GTTS as approximate beta distributions, assessing the local effects of uncertainty mitigation. Subsequently, the steady-state energy flow models incorporated with uncertainty variables of IEGS are reformulated into the chaotic mathematical counterpart via the generalized polynomial chaos method (GPC), highlighting the global performance of novel designs. In the subsequent step, the independent random variables are factorized from chaotic equations leveraged by the improved Galerkin method and remodeled into a high-dimensional deterministic equation. Based on this, the probabilistic distributions of state variables with higher order uncertainty parameters for IEGS, such as bus voltage, natural gas node pressure, etc., are sequentially computed via the Newton method. Furthermore, this paper performed a comparative simulation in the IEGS 4–12 system and IEGS 118–96 system and empirically tested the feasibility and validity of the novel design in uncertainty mitigation. Through the quantitative instantiation, enhancing the co-located energy storage capacity, increasing the outlet pressure of compressors, and decreasing the coupling level between subsystems may mitigate the uncertainty within IEGS. Derived GPC algorithms improve the computational speed and accuracy than other methods for the computation of multiple uncertainty variables in IEGS. This exploration delves into the local energy communities in various operating conditions and offers valuable suggestions for sizing and control strategies for the novel design in IEGS.

Suggested Citation

  • Chen, Houhe & Shao, Junyan & Jiang, Tao & Li, Xue & Zhang, Rufeng, 2024. "Performance assessment of multiple-types co-located storage for uncertainty mitigation in integrated electric-gas system using generalized polynomial chaos," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013138
    DOI: 10.1016/j.apenergy.2024.123930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Albrecht, Friedemann Georg & Nguyen, Tuong-Van, 2020. "Prospects of electrofuels to defossilize transportation in Denmark – A techno-economic and ecological analysis," Energy, Elsevier, vol. 192(C).
    3. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    5. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang, 2019. "Flexible dispatch of a building energy system using building thermal storage and battery energy storage," Applied Energy, Elsevier, vol. 243(C), pages 274-287.
    7. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    9. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    10. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    12. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
    13. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    14. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hull, Christopher & Wust, Jacques & Booysen, M.J. & McCulloch, M.D., 2024. "Techno-economic optimization and assessment of solar-battery charging station under grid constraints with varying levels of fleet EV penetration," Applied Energy, Elsevier, vol. 374(C).
    2. Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zhang, Chaoyi & Jiao, Zaibin & Liu, Junshan & Ning, Keer, 2023. "Robust planning and economic analysis of park-level integrated energy system considering photovoltaic/thermal equipment," Applied Energy, Elsevier, vol. 348(C).
    4. Yang, Yulong & Zhao, Yang & Yan, Gangui & Mu, Gang & Chen, Zhe, 2024. "Real time aggregation control of P2H loads in a virtual power plant based on a multi-period stackelberg game," Energy, Elsevier, vol. 303(C).
    5. Sharma, Abhimanyu & Padhy, Narayana Prasad, 2024. "Iterative convex relaxation of unbalanced power distribution system integrated multi-energy systems," Energy, Elsevier, vol. 294(C).
    6. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    7. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    8. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    9. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    10. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    11. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    12. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    13. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    14. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    16. Jia, Jiandong & Li, Haiqiao & Wu, Di & Guo, Jiacheng & Jiang, Leilei & Fan, Zeming, 2024. "Multi-objective optimization study of regional integrated energy systems coupled with renewable energy, energy storage, and inter-station energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    17. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    18. Mithila Seva Bala Sundaram & ChiaKwang Tan & Jeyraj Selvaraj & Ab. Halim Abu Bakar, 2023. "Energy Savings for Various Residential Appliances and Distribution Networks in a Malaysian Scenario," Energies, MDPI, vol. 16(13), pages 1-18, June.
    19. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    20. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.