IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics030626192400744x.html
   My bibliography  Save this article

Toward intelligent demand-side energy management via substation-level flexible load disaggregation

Author

Listed:
  • Gao, Ang
  • Zheng, Jianyong
  • Mei, Fei
  • Liu, Yu

Abstract

Non-intrusive load monitoring is a prominent part of demand-side energy management that provides visibility of flexible loads to support real-time electricity market pricing strategies and intelligent demand response programs. Compared with household-level load disaggregation, substation-level load disaggregation can significantly preserve residential privacy and reduce facility costs while providing sufficient information of flexible loads for intelligent demand-side energy management from the area scale. Especially, among various flexible loads, thermostatically controlled loads are highlighted due to their large proportion and high demand response elasticity. However, due to the variation and complexity of residential routines on a large scale, disaggregation of flexible loads from the substation level remains unsolved. To this end, focusing on thermostatically controlled loads, this paper proposes a contrastive sequence-to-point learning algorithm for substation-level flexible load disaggregation to fill the research gap. In the first stage, the theory of the effect of load aggregation and thermal inertia effect is introduced, and significant impact factors on flexible loads are summarized. Secondly, a substation-level flexible load disaggregation algorithm based on contrastive sequence-to-point learning is proposed, where pair-wise comparison and residual mechanism are combined in a semi-supervised structure to extract deep features and track fluctuations in flexible loads. Then, SHapley Additive exPlanations are utilized to ensure the optimization and interpretability of the algorithm. The proposed algorithm is tested and verified on public datasets under low frequency, reducing the disaggregation Mean Absolute Percentage Error of thermostatically controlled loads to as low as 8.78% and 11.26% for bi-directional and unidirectional structures separately. Additionally, it is generalizable to disaggregate other flexible loads, including photovoltaic and electric vehicles, demonstrating satisfactory performance. The algorithm has proved to be robust to data sparsity problems and practical for substation-level demand response potential estimation.

Suggested Citation

  • Gao, Ang & Zheng, Jianyong & Mei, Fei & Liu, Yu, 2024. "Toward intelligent demand-side energy management via substation-level flexible load disaggregation," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400744x
    DOI: 10.1016/j.apenergy.2024.123361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400744X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Dong & Li, Junhuai & Wang, Huaijun & Wang, Kan & Feng, Jie & Xiao, Ming, 2024. "ApplianceFilter: Targeted electrical appliance disaggregation with prior knowledge fusion," Applied Energy, Elsevier, vol. 365(C).
    2. Zhou, Shiqi & Lin, Meng & Huang, Shilong & Xiao, Kai, 2024. "Open set compound fault recognition method for nuclear power plant based on label mask weighted prototype learning," Applied Energy, Elsevier, vol. 369(C).
    3. Weiqi Pan & Bokang Zou & Fengtao Li & Yifu Luo & Qirui Chen & Yuanshi Zhang & Yang Li, 2024. "Collaborative Operation Optimization Scheduling Strategy of Electric Vehicle and Steel Plant Considering V2G," Energies, MDPI, vol. 17(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s030626192400744x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.