IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017306.html
   My bibliography  Save this article

Risk-factor-oriented stochastic dominance approach for industrial integrated energy system operation leveraging physical and financial flexible resources

Author

Listed:
  • Xiao, Dongliang
  • Lin, Zhenjia
  • Wu, Qiuwei
  • Meng, Anbo
  • Yin, Hao
  • Lin, Zhenhong

Abstract

The rapid development of renewable energy resources poses challenges to the economic and reliable operation of energy systems, necessitating the risk management by utilizing various flexible resources and optimization techniques. However, when there exist multiple risk factors faced by decision maker, it might be difficult to clearly control the risks of intermittent renewables. To resolve this issue, a stochastic dominance-constrained operation strategy leveraging flexible resources is developed for an industrial integrated energy system (IIES), and a risk factor-oriented benchmark selection method is proposed to manage the risks of intermittent renewables given the full profit distribution, which makes the proposed strategy superior to the stochastic strategies using certain risk measures. Firstly, the theory and mathematics of stochastic dominance are systematically introduced, and a stochastic dominance-constrained model is then developed for an IIES in electricity markets. Next, a risk factor-oriented benchmark distribution selection method is proposed by solving the stochastic model without considering a specific risk factor, based on which a stochastic dominance-constrained operation strategy for IIES leveraging flexible resources is obtained. Finally, case studies are conducted by using realistic data in the electricity markets of the United States. It is shown that the intermittent renewables decreased the profits by more than 7 % in half of the scenarios, while the proposed risk-factor-oriented stochastic dominance-constrained approach is shown to effectively manage this type of risk in all scenarios by employing flexible financial and physical resources. If the financial resource in trading account is increased by 33.33 %, the fixed investment cost of installing storage could be decreased by 92.59 %.

Suggested Citation

  • Xiao, Dongliang & Lin, Zhenjia & Wu, Qiuwei & Meng, Anbo & Yin, Hao & Lin, Zhenhong, 2025. "Risk-factor-oriented stochastic dominance approach for industrial integrated energy system operation leveraging physical and financial flexible resources," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017306
    DOI: 10.1016/j.apenergy.2024.124347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    2. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    3. van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2016. "The electricity balancing market: Exploring the design challenge," Utilities Policy, Elsevier, vol. 43(PB), pages 186-194.
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
    6. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    7. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    8. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    9. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    10. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    11. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    12. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    13. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    14. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).
    15. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    16. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Junhong & Feng, Xiaolong & Chen, Xiangru & Jin, Xilin & Wang, Xingce & Hao, Tong & Hong, Feng & Du, Xiaoze, 2024. "Optimal scheduling of active distribution network considering symmetric heat and power source-load spatial-temporal characteristics," Applied Energy, Elsevier, vol. 373(C).
    2. G., Varathan & J., Belwin Edward, 2024. "A review of uncertainty management approaches for active distribution system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    3. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    4. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    5. Chen, Mengxiao & Cao, Xiaoyu & Zhang, Zitong & Yang, Lun & Ma, Donglai & Li, Miaomiao, 2024. "Risk-averse stochastic scheduling of hydrogen-based flexible loads under 100% renewable energy scenario," Applied Energy, Elsevier, vol. 370(C).
    6. Xu, Yijun & Zhang, Xuan & Li, Ji, 2024. "Multiple energy planning in the energy hub considering renewable sources, electric vehicles and management in the daily electricity market with wind multi-objective optimization algorithm," Energy, Elsevier, vol. 309(C).
    7. Noorollahi, Younes & Zahedi, Rahim & Ahmadi, Esmaeil & Khaledi, Arian, 2025. "Low carbon solar-based sustainable energy system planning for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    8. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Fan, Yukun & Liu, Weifeng & Zhu, Feilin & Wang, Sen & Yue, Hao & Zeng, Yurou & Xu, Bin & Zhong, Ping-an, 2024. "Short-term stochastic multi-objective optimization scheduling of wind-solar-hydro hybrid system considering source-load uncertainties," Applied Energy, Elsevier, vol. 372(C).
    12. Zhong, Shangpeng & Wang, Xiaoming & Wu, Hongbin & He, Ye & Xu, Bin & Ding, Ming, 2024. "Energy hub management for integrated energy systems: A multi-objective optimization control strategy based on distributed output and energy conversion characteristics," Energy, Elsevier, vol. 306(C).
    13. Andrés Rengel & Alexander Aguila Téllez & Leony Ortiz & Milton Ruiz, 2023. "Optimal Insertion of Energy Storage Systems Considering the Economic Dispatch and the Minimization of Energy Not Supplied," Energies, MDPI, vol. 16(6), pages 1-26, March.
    14. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).
    15. Gali, Vijayakumar & Gupta, Nitin & Ahmadi, Mohammad Jawid & Morey, Meghraj Sudhakar & Kural, Askat & Jamwal, Prashant Kumar, 2025. "Experimental investigation of adaptive multi-generalized integrator-based controller for electronically interfaced hybrid microgrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    16. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    17. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).
    18. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    19. H. Qi & C. K. Woo & K. H. Cao & J. Zarnikau & R. Li, 2024. "Price responsiveness of solar and wind capacity demands," Post-Print hal-04597188, HAL.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.