IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007190.html
   My bibliography  Save this article

Data-driven real-time fuel cetane estimation and control design for multifuel UAVs

Author

Listed:
  • Pal, Anuj
  • Cornelius, Andrew
  • Sun, Zongxuan
  • Kim, Kenneth
  • Kweon, Chol-Bum Mike

Abstract

Multifuel compression ignition (CI) engines have been proven to be useful for the aviation industry, especially for powering unmanned aerial vehicles (UAVs). To operate multifuel UAVs at desired operating conditions, an appropriate control strategy is needed that can adapt based on changing fuel properties. Therefore, having knowledge of fuel properties at all times is critical. However, the challenge comes in identifying fuel property in real-time when fuel switching happens during engine operation. The current work proposes a novel data-driven control algorithm for estimating fuel property (cetane number) and adapting the control strategy in real-time. Gaussian process regression (GPR) is used for modeling the multifuel CI engine, and feedforward control is developed to correct the control inputs based on the estimated fuel cetane property. For feedforward control development, model inversion of data-driven GPR is performed. Based on the estimated fuel property and using the feedforward table, the control strategy gets adjusted in real-time within one combustion cycle to avoid the system performance from drifting away beyond specified bounds. The entire approach was implemented and validated on an engine test bed. Fuel switching is performed in real time, and the results demonstrated the capability of the algorithm to maintain the desired performance.

Suggested Citation

  • Pal, Anuj & Cornelius, Andrew & Sun, Zongxuan & Kim, Kenneth & Kweon, Chol-Bum Mike, 2024. "Data-driven real-time fuel cetane estimation and control design for multifuel UAVs," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007190
    DOI: 10.1016/j.apenergy.2024.123336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    2. Xu, Bin & Li, Xiaoya, 2021. "A Q-learning based transient power optimization method for organic Rankine cycle waste heat recovery system in heavy duty diesel engine applications," Applied Energy, Elsevier, vol. 286(C).
    3. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    4. Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
    5. Owoyele, Opeoluwa & Pal, Pinaki, 2021. "A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbo Ai & Haeng Muk Cho, 2024. "Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review," Energies, MDPI, vol. 17(19), pages 1-25, September.
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    3. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    4. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    5. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    7. Mostafa M. Saad & Ramanunni Parakkal Menon & Ursula Eicker, 2023. "Supporting Decision Making for Building Decarbonization: Developing Surrogate Models for Multi-Criteria Building Retrofitting Analysis," Energies, MDPI, vol. 16(16), pages 1-28, August.
    8. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    9. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    10. Singh, Manav Mahan & Singaravel, Sundaravelpandian & Geyer, Philipp, 2021. "Machine learning for early stage building energy prediction: Increment and enrichment," Applied Energy, Elsevier, vol. 304(C).
    11. Yi Liang & Yingying Fan & Yongfang Peng & Haigang An, 2022. "Smart Grid Project Benefit Evaluation Based on a Hybrid Intelligent Model," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    12. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    13. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    14. John Austin McCandlish & Turgay Ayer & Jagpreet Chhatwal, 2023. "Cost-Effectiveness and Value-of-Information Analysis Using Machine Learning–Based Metamodeling: A Case of Hepatitis C Treatment," Medical Decision Making, , vol. 43(1), pages 68-77, January.
    15. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    16. Lin, Runze & Luo, Yangyang & Wu, Xialai & Chen, Junghui & Huang, Biao & Su, Hongye & Xie, Lei, 2024. "Surrogate empowered Sim2Real transfer of deep reinforcement learning for ORC superheat control," Applied Energy, Elsevier, vol. 356(C).
    17. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).
    18. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    19. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    20. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.