IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002629.html
   My bibliography  Save this article

An optimization model for simultaneous design and operation of renewable energy microgrids integrated with water supply systems

Author

Listed:
  • Bhatraj, Anudeep
  • Salomons, Elad
  • Housh, Mashor

Abstract

Water Supply Systems are recognized as significant energy consumers. Consequently, numerous studies have concentrated on optimizing and designing energy-efficient water systems. Nonetheless, despite the increasing awareness of renewable energy sources, less emphasis was given to the optimized integration of sustainable green energy systems in the design and operation of water supply systems. The proposed model presents an innovative approach by introducing an optimization model for water supply systems that integrates solar plants and battery storage systems, transforming conventional water supply systems design and operation methods. The optimization model addresses both the design and operation of these systems, with the primary objective of minimizing total costs, including capital and operational expenditures. This novel model not only determines the optimal sizing of essential components and daily operations, encompassing power and water flow regulation across different seasons, but also signifies a paradigm shift in the planning and management of integrated water and energy systems. The comparative analysis between conventional water supply systems and our combined water and power systems highlights their compelling advantages. The results show how the utilization of clean energy resources can facilitate remarkable improvements in energy cost efficiency. Furthermore, the approach not only reshapes conventional operational strategies, but also redefines traditional design guidelines for water supply systems. The study also extends to the sensitivity analysis, demonstrating that the advantages of solar and battery integration are contingent on the size of the water supply systems, with larger systems experiencing more significant benefits. The results in this study advance our understanding of integrated systems, providing a clear roadmap toward a cleaner, more efficient, and sustainable future for water and energy infrastructure.

Suggested Citation

  • Bhatraj, Anudeep & Salomons, Elad & Housh, Mashor, 2024. "An optimization model for simultaneous design and operation of renewable energy microgrids integrated with water supply systems," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002629
    DOI: 10.1016/j.apenergy.2024.122879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    2. Goodarzi, Mostafa & Li, Qifeng, 2022. "Evaluate the capacity of electricity-driven water facilities in small communities as virtual energy storage," Applied Energy, Elsevier, vol. 309(C).
    3. Edmonds, Lawryn & Derby, Melanie & Hill, Mary & Wu, Hongyu, 2021. "Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locational marginal pricing," Renewable Energy, Elsevier, vol. 177(C), pages 1438-1450.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    2. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    3. Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
    4. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Hak-Ju Lee & Seon-Ju Ahn, 2018. "Optimal Scheduling and Real-Time Control Schemes of Battery Energy Storage System for Microgrids Considering Contract Demand and Forecast Uncertainty," Energies, MDPI, vol. 11(6), pages 1-15, May.
    5. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    6. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky & Al-Awami, Ali Taleb, 2023. "Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid," Applied Energy, Elsevier, vol. 335(C).
    7. Chong Chen & Xuan Zhou & Xiaowei Yang & Zhiheng He & Zhuo Li & Zhengtian Li & Xiangning Lin & Ting Wen & Yixin Zhuo & Ning Tong, 2018. "Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads," Energies, MDPI, vol. 11(4), pages 1-22, April.
    8. Yong-Rae Lee & Hyung-Joon Kim & Mun-Kyeom Kim, 2021. "Optimal Operation Scheduling Considering Cycle Aging of Battery Energy Storage Systems on Stochastic Unit Commitments in Microgrids," Energies, MDPI, vol. 14(2), pages 1-21, January.
    9. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    10. Yang, Yesen & Li, Zhengmao & Mandapaka, Pradeep V. & Lo, Edmond Y.M., 2023. "Risk-averse restoration of coupled power and water systems with small pumped-hydro storage and stochastic rooftop renewables," Applied Energy, Elsevier, vol. 339(C).
    11. Nadya Noorfatima & Yejin Yang & Jaesung Jung & Jun-Sung Kim, 2021. "Congestion Management by Allocating Network Use Cost for the Small-Scale DER Aggregator Market in South Korea," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Sharma, Santosh & Li, Qifeng, 2024. "Decentralized optimization of energy-water nexus based on a mixed-integer boundary compatible algorithm," Applied Energy, Elsevier, vol. 359(C).
    14. Hengyu Liu & Qingqi Zhao & Yang Liu & Zuoxia Xing & Dawei Hu & Pengfei Zhang & Zhi Zhang & Jiazheng Sun, 2023. "A Multi-Subject Game-Based Operation Strategy for VPPs Integrating Wind-Solar-Storage," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    15. Jeong, Jaeik & Kim, Hongseok, 2021. "DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting," Applied Energy, Elsevier, vol. 294(C).
    16. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    17. Hojin Kim & Jaewoo So & Hongseok Kim, 2022. "Carbon-Neutral Cellular Network Operation Based on Deep Reinforcement Learning," Energies, MDPI, vol. 15(12), pages 1-13, June.
    18. Boram Kim & Sunghwan Bae & Hongseok Kim, 2017. "Optimal Energy Scheduling and Transaction Mechanism for Multiple Microgrids," Energies, MDPI, vol. 10(4), pages 1-17, April.
    19. Seung-Ju Lee & Yourim Yoon, 2020. "Electricity Cost Optimization in Energy Storage Systems by Combining a Genetic Algorithm with Dynamic Programming," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    20. Luis Galván & Juan M. Navarro & Eduardo Galván & Juan M. Carrasco & Andrés Alcántara, 2019. "Optimal Scheduling of Energy Storage Using A New Priority-Based Smart Grid Control Method," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.