IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017889.html
   My bibliography  Save this article

Adaptive cold-load pickup considerations in 2-stage microgrid unit commitment for enhancing microgrid resilience

Author

Listed:
  • Hu, Rongxing
  • Shirsat, Ashwin
  • Muthukaruppan, Valliappan
  • Li, Yiyan
  • Zhang, Si
  • Tang, Wenyuan
  • Baran, Mesut
  • Lu, Ning

Abstract

In an extended main grid outage spanning multiple days, load shedding serves as a critical mechanism for islanded microgrids to maintain essential power and energy reserves that are indispensable for fulfilling reliability and resiliency mandates. However, using load shedding for such purposes leads to increasing occurrence of cold load pickup (CLPU) events. This study presents an innovative adaptive CLPU model that introduces a method for determining and incorporating parameters related to CLPU power and energy requirements into a two-stage microgrid unit commitment (MGUC) algorithm. In contrast to the traditional fixed-CLPU-curve approach, this model calculates CLPU duration, power, and energy demands by considering outage durations and ambient temperature variations within the MGUC process. By integrating the adaptive CLPU model into the MGUC problem formulation, it allows for the optimal allocation of energy resources throughout the entire scheduling horizon to fulfill the CLPU requirements when scheduling multiple CLPU events. The performance of the enhanced MGUC algorithm considering CLPU needs is assessed using actual load and photovoltaic (PV) data. Simulation results demonstrate significant improvements in dispatch optimality evaluated by the amount of load served, customer comfort, energy storage operation, and adherence to energy schedules. These enhancements collectively contribute to reliable and resilient microgrid operation.

Suggested Citation

  • Hu, Rongxing & Shirsat, Ashwin & Muthukaruppan, Valliappan & Li, Yiyan & Zhang, Si & Tang, Wenyuan & Baran, Mesut & Lu, Ning, 2024. "Adaptive cold-load pickup considerations in 2-stage microgrid unit commitment for enhancing microgrid resilience," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017889
    DOI: 10.1016/j.apenergy.2023.122424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    2. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    3. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Rousis, Anastasios Oulis & Strbac, Goran, 2020. "On microgrids and resilience: A comprehensive review on modeling and operational strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Mehri Arsoon, Milad & Moghaddas-Tafreshi, Seyed Masoud, 2020. "Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids," Applied Energy, Elsevier, vol. 261(C).
    3. Mohammed Alruwaili & Liana Cipcigan, 2022. "Optimal Annual Operational Cost of a Hybrid Renewable-Based Microgrid to Increase the Power Resilience of a Critical Facility," Energies, MDPI, vol. 15(21), pages 1-23, October.
    4. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    8. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    9. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    10. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    11. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    12. Bintoudi, Angelina D. & Demoulias, Charis, 2023. "Optimal isolated microgrid topology design for resilient applications," Applied Energy, Elsevier, vol. 338(C).
    13. Habibollah Raoufi & Vahid Vahidinasab & Kamyar Mehran, 2020. "Power Systems Resilience Metrics: A Comprehensive Review of Challenges and Outlook," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    14. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Muthusamy Thirumalai & Raju Hariharan & Thangaraj Yuvaraj & Natarajan Prabaharan, 2024. "Optimizing Distribution System Resilience in Extreme Weather Using Prosumer-Centric Microgrids with Integrated Distributed Energy Resources and Battery Electric Vehicles," Sustainability, MDPI, vol. 16(6), pages 1-41, March.
    17. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    19. Mahdi Azimian & Vahid Amir & Reza Habibifar & Hessam Golmohamadi, 2021. "Probabilistic Optimization of Networked Multi-Carrier Microgrids to Enhance Resilience Leveraging Demand Response Programs," Sustainability, MDPI, vol. 13(11), pages 1-30, May.
    20. Kaczmarski, Jesse I., 2022. "Public support for community microgrid services," Energy Economics, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.