IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923011728.html
   My bibliography  Save this article

Design of a multicylinder crank-slider wind energy harvester utlizing Faraday's law of electromagntic induciton

Author

Listed:
  • Farzidayeri, Jamshid
  • Taylor, Rick
  • Bedekar, Vishwas

Abstract

Advancement in smart electronic devices such as smartphones, smart watches, tablets have impacted the requirement of supplying continuous energy for powering and functioning of these devices. There have been several research studies performed on harvesting energy from mechanical vibrations, wind, fluid flow, solar and geothermal etc. using various mechanisms. Piezoelectric mechanism provides high power density of energy conversion from mechanical vibrations or wind into electric voltage or charge, however, due to the lower power output of these devices, many devices must be summoned in order to generate actual usable power for small scale electronic devices. In this paper, we have designed, developed, and extensively tested a multicylinder wind energy harvester that converts rotational motion into linear motion which further converts it into electric voltage using Faraday's law of electromagnetic induction. The multicylinder design and modified crank allow the device to output higher power while operating at lower wind speeds such as 2.4 m/s. Furthermore, this device included a rectifier to convert from AC to DC, a capacitor to clean the output signal, and a 5 V regulator that can be used to charge a USB connected smartphone or other smart devices. Under a regulated low wind speed of 2.4 m/s and across a 305 Ω load, the device had a rotational frequency of 0.76 Hz and a power output of 1.2 mW whereas at the wind speed of 4.9 m/s the rotational frequency was 7.25 Hz and the output 421.9 mW. At a rotational frequency of 6 Hz the device was used to charge a 3.7 V 46 mAh smart watch at 1% charge in 1.4 min. We also used an optimized 305 Ω load in wind speeds reaching 10.1 m/s in real world conditions at which point the harvesters' output peaked at 1.21 W resulting in a power density of 19.98 W/m3. Authors believe that these results are promising for understanding, investigating, and providing continuous power solutions to small scale smart electronic devices.

Suggested Citation

  • Farzidayeri, Jamshid & Taylor, Rick & Bedekar, Vishwas, 2023. "Design of a multicylinder crank-slider wind energy harvester utlizing Faraday's law of electromagntic induciton," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011728
    DOI: 10.1016/j.apenergy.2023.121808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamshid Farzidayeri & Vishwas Bedekar, 2022. "Design of a V-Twin with Crank-Slider Mechanism Wind Energy Harvester Using Faraday’s Law of Electromagnetic Induction for Powering Small Scale Electronic Devices," Energies, MDPI, vol. 15(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011728. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.