IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics030626192300973x.html
   My bibliography  Save this article

Visible light-driven dual photoelectrode microbial electrosynthesis using BiVO4-RuO2-IrO2 on Ti mesh photoanode and ZIF-67/g-C3N4 on carbon felt photocathode for the efficient reduction of CO2 into acetate

Author

Listed:
  • Li, Tao
  • Chen, Yu
  • Zhang, Kang
  • Li, Xiangling
  • Song, Tianshun
  • Xie, Jingjing

Abstract

Microbial electrosynthesis (MES) systems integrated with solar energy (photoelectrode-assisted MES) represent an attractive method for the fixation of CO2 through microbial electrochemical processes. In this study, BiVO4-RuO2-IrO2/Ti with long-term stability and corrosion resistance was used as photoanode through the electrophoretic deposition of BiVO4 on RuO2-IrO2/Ti mesh, significantly reducing the charge recombination rate and enhancing the oxygen evolution reaction (OER) ability. Simultaneously, the ZIF-67/g-C3N4 photocathode can significantly increase CO2 absorption and hydrogen production by enhancing electron–hole separation ability under visible light. Consequently, the MES system with the BiVO4-RuO2-IrO2/Ti anode and ZIF-67/g-C3N4 photocathode obtained an acetate yield of 0.46 g/L/d at −0.9 V versus Ag/AgCl within 14 days. This value was 4.6 times that under dark conditions. The solar-to-acetate conversion efficiency was determined to be 1.52%. Furthermore, the MES with dual photoelectrode still obtained an acetate yield of 0.09 g/L/d at −0.6 V versus Ag/AgCl. These results showed that the MES with the BiVO4-RuO2-IrO2/Ti photoanode and ZIF-67/g-C3N4 photocathode reduced OER overpotential, increased electron transport rate, and improved CO2 supply for the simultaneous supplementation of substrates and electrons in MES. This work provides a new strategy for constructing efficient photoelectrodes in MES to achieve highly efficient chemical generation for CO2 transformation under solar light.

Suggested Citation

  • Li, Tao & Chen, Yu & Zhang, Kang & Li, Xiangling & Song, Tianshun & Xie, Jingjing, 2023. "Visible light-driven dual photoelectrode microbial electrosynthesis using BiVO4-RuO2-IrO2 on Ti mesh photoanode and ZIF-67/g-C3N4 on carbon felt photocathode for the efficient reduction of CO2 into ac," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s030626192300973x
    DOI: 10.1016/j.apenergy.2023.121609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300973X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng-Shiuan Yeh & Ta-Kang Su & An-Shao Lien & Farzaneh Zamani & Johann Kroha & Chao-Ching Liao & Stefan Kirchner & Juhn-Jong Lin, 2020. "Oxygen vacancy-driven orbital multichannel Kondo effect in Dirac nodal line metals IrO2 and RuO2," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Bian, Bin & Shi, Le & Katuri, Krishna P. & Xu, Jiajie & Wang, Peng & Saikaly, Pascal E., 2020. "Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s030626192300973x. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.