IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v340y2023ics0306261923003653.html
   My bibliography  Save this article

Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)

Author

Listed:
  • Bushra, Nayab

Abstract

This study proposes a performance-driven design method for a new and novel, window-integrated planer Cassegrain concentrator shading system (PCSS) for daylight and energy applications. The integration process is complex and needs to address multi-disciplinary concerns, where the PCSS’s performance depends on system design and building geometries ensuring good solar gains. The method is rigorous yet adaptable to inform decision-making involving multiple stakeholders and promote the use of PCSSs as, window-integrated technology. The method contributes to engineering PCSS with respect to windows in a parametric model. A total of 3,750 designs are generated by controlling parameters related to the building (i.e., orientation, window-to-wall ratio (WWR), louvers’ tilt and number), and PCSS (i.e., modules number, mirrors’ shape and dimensions). The method is validated in an illustrative case study of a residential building in Madrid (Spain), where the performance is assessed in terms of annually-averaged electrical load match index (av.LMIEl), thermal load match index (av.LMITh), continuous daylight autonomy (cDA(500 lx)), and useful daylight illuminance (UDI(100–2000 lx)). Further, a sensitivity analysis is performed to investigate the relative significance of parameters. The method enables a performance-driven design of buildings and PCSSs and facilitates stakeholders for informed decision-making in projects concerning energy transition in buildings.

Suggested Citation

  • Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).
  • Handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923003653
    DOI: 10.1016/j.apenergy.2023.121001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2017. "Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling," Renewable Energy, Elsevier, vol. 101(C), pages 467-483.
    2. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    4. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    6. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    7. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    8. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    9. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    10. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bushra, Nayab & Hartmann, Timo, 2024. "A method for design optimization of roof-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 353(PA).
    2. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    3. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Bushra, Nayab, 2023. "Techno-economic feasibility assessment of a planer cassegrain solar concentrator (PCSC) based on a parametric modeling approach," Energy, Elsevier, vol. 273(C).
    5. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale," Applied Energy, Elsevier, vol. 326(C).
    6. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    7. Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).
    8. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    9. Novelli, Nick & Phillips, Kenton & Shultz, Justin & Derby, Melanie M. & Salvas, Ryan & Craft, Jesse & Stark, Peter & Jensen, Michael & Derby, Stephen & Dyson, Anna, 2021. "Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector," Renewable Energy, Elsevier, vol. 176(C), pages 617-634.
    10. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    11. Nick Novelli & Justin S. Shultz & Mohamed Aly Etman & Kenton Phillips & Jason O. Vollen & Michael Jensen & Anna Dyson, 2022. "Towards Energy-Positive Buildings through a Quality-Matched Energy Flow Strategy," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    12. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.
    13. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    14. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    15. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    16. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    17. Sinha, Shreya & Narain, Nivedita & Bhanjdeo, Arundhita, 2022. "Building back better? Resilience as wellbeing for rural migrant households in Bihar, India," World Development, Elsevier, vol. 159(C).
    18. Weifan Long & Xiaofei Chen & Qingsong Ma & Xindong Wei & Qiao Xi, 2022. "An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    19. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    20. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923003653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.