IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics030626192201707x.html
   My bibliography  Save this article

Mass transfer of multi-pollutants over titania-based SCR catalyst: A molecular dynamics study

Author

Listed:
  • Xin, Qi
  • Yang, Yang
  • Liu, Shaojun
  • Zhang, Xiao
  • Zheng, Chenghang
  • Lin, Qingyang
  • Gao, Xiang

Abstract

Mass transfer can significantly affect the SCR process which is designed for NOx removal. However, it is still challenging to characterize the transport of gaseous species involved in the process, especially at nano-scale. This work probes into the application of non-equilibrium molecular dynamics (NEMD) simulations to study the mass transfer of multi-pollutants over a titania-based catalyst. A dual control-volume (DCV) model was proposed to simulate transport of typical gaseous molecules (e.g. NO, NH3 and SO2). The impacts of temperature, pore width, hydroxyl sites and competitive diffusion on diffusivity of objective molecules were studied in details. The results showed that temperature and surface sites could affect NH3 more significantly than NO and SO2, yet the influence of surface sites was strongly size-dependent. The reduction in NH3 diffusivity caused by the presence of surface sites decreased from 32.37 % to 2.97 % when the pore width grows from 25 Å to 75 Å. The competitive transport between NH3 and SO2 has also mitigated the impacts of surface sites on both molecules.

Suggested Citation

  • Xin, Qi & Yang, Yang & Liu, Shaojun & Zhang, Xiao & Zheng, Chenghang & Lin, Qingyang & Gao, Xiang, 2023. "Mass transfer of multi-pollutants over titania-based SCR catalyst: A molecular dynamics study," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s030626192201707x
    DOI: 10.1016/j.apenergy.2022.120450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201707X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    2. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Optimization of global and local pollution control in electricity production from coal burning," Applied Energy, Elsevier, vol. 92(C), pages 369-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    2. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    3. Cao, Fangyu & Yang, Bao, 2014. "Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure," Applied Energy, Elsevier, vol. 113(C), pages 1512-1518.
    4. Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
    5. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    6. Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
    7. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    8. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "MINLP model for optimizing electricity production from coal-fired power plants considering carbon management," Energy Policy, Elsevier, vol. 51(C), pages 493-501.
    9. Jarosław Szlugaj & Krzysztof Galos, 2021. "Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland," Energies, MDPI, vol. 14(14), pages 1-16, July.
    10. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    11. Fu, Huang-Xi & Zhang, Li-Zhi & Xu, Jian-Chang & Cai, Rong-Rong, 2016. "A dual-scale analysis of a desiccant wheel with a novel organic–inorganic hybrid adsorbent for energy recovery," Applied Energy, Elsevier, vol. 163(C), pages 167-179.
    12. Lee, Suh-Young & Lee, In-Beum & Han, Jeehoon, 2019. "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, Elsevier, vol. 238(C), pages 34-44.
    13. Munguía-López, Aurora del Carmen & González-Bravo, Ramón & Ponce-Ortega, José María, 2019. "Evaluation of carbon and water policies in the optimization of water distribution networks involving power-desalination plants," Applied Energy, Elsevier, vol. 236(C), pages 927-936.
    14. Bilal Alam Khan & Asad Ullah & Muhammad Wajid Saleem & Abdullah Nawaz Khan & Muhammad Faiq & Mir Haris, 2020. "Energy Minimization in Piperazine Promoted MDEA-Based CO 2 Capture Process," Sustainability, MDPI, vol. 12(20), pages 1-13, October.
    15. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Climate change mitigation with integration of renewable energy resources in the electricity grid of New South Wales, Australia," Renewable Energy, Elsevier, vol. 66(C), pages 305-313.
    16. Huanan Li & Quande Qin, 2017. "Optimal selection of different CCS technologies under CO2 reduction targets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1197-1209, September.
    17. Harnpon Phungrassami & Phairat Usubharatana, 2021. "Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    18. Mingwei Yan & Yuetao Shi, 2020. "Thermal and Economic Analysis of Multi-Effect Concentration System by Utilizing Waste Heat of Flue Gas for Magnesium Desulfurization Wastewater," Energies, MDPI, vol. 13(20), pages 1-20, October.
    19. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    20. Golušin, Mirjana & Munitlak Ivanović, Olja & Redžepagić, Srdjan, 2013. "Transition from traditional to sustainable energy development in the region of Western Balkans – Current level and requirements," Applied Energy, Elsevier, vol. 101(C), pages 182-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s030626192201707x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.