IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922016634.html
   My bibliography  Save this article

Electricity market modeling considering a high penetration of flexible heating systems and electric vehicles

Author

Listed:
  • Kröger, David
  • Peper, Jan
  • Rehtanz, Christian

Abstract

The electrification of the heating and transportation sectors is a major building block in Germany’s effort to reduce carbon dioxide emissions. The additional loads and flexibilities resulting from the anticipated large-scale integration of the heating and transportation sectors necessitate an adequate representation in electricity market modeling. First, the paper presents a comprehensive modeling approach of the heating sector in a pan-European electricity market simulation considering both small-scale building heat pumps and large-scale conversion units with thermal energy storages in district heating networks. The operation of small-scale building heat pumps is emulated using an electro-thermal 1R1C building model integrated into the economic dispatch formulation while the operation of units in district heating networks is restricted by additional constraints resulting from the combined heat and power output, local heat load coverage and possible heat power transfer between heating networks. The transportation sector is mapped using previously published models by the authors including both controlled and fast charging processes. Subsequently, the load shift potentials resulting from the market-integration of the heating and transportation sectors and their impact on the pan-European electricity market with focus on Germany based on the three target years 2030, 2040 and 2045 are examined. Furthermore, by applying a Monte Carlo simulation to map possible future primary energy source prices a major uncertainty dimension is addressed. Considering the current German electricity market design, the integration of the two sectors lead to a moderate increase in future annual electricity demands and a substantial increase in market-based peak load. The resulting annual peak load from power-to-heat devices account to 22 GW (2030), 53 GW (2040) and 102 GW (2045) and from electric vehicles to 12 GW (2030), 36 GW (2040) and 96 GW (2045) for the target years. Further results demonstrate the larger load-shift potentials of electric vehicles compared to building heat pumps by comparing the weighted annual average market price of the flexible loads. The primary fuel price uncertainty is examined based on the 0.25, 0.50 and 0.75 quantiles for the target years which result in annual average electricity market price spreads of over 2.16 (2030), 2.97 (2040) and 3.44 (2045) between the 0.25 and 0.75 quantile scenarios.

Suggested Citation

  • Kröger, David & Peper, Jan & Rehtanz, Christian, 2023. "Electricity market modeling considering a high penetration of flexible heating systems and electric vehicles," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016634
    DOI: 10.1016/j.apenergy.2022.120406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922016634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    2. Chiara Magni & Alessia Arteconi & Konstantinos Kavvadias & Sylvain Quoilin, 2020. "Modelling the Integration of Residential Heat Demand and Demand Response in Power Systems with High Shares of Renewables," Energies, MDPI, vol. 13(24), pages 1-19, December.
    3. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
    5. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    6. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    7. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    8. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    9. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jansen, Malte & Gross, Rob & Staffell, Iain, 2024. "Quantitative evidence for modelling electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Alexander Roth, 2023. "Power sector impacts of a simultaneous European heat pump rollout," Papers 2312.06589, arXiv.org.
    3. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    4. Samuli Honkapuro & Jasmin Jaanto & Salla Annala, 2023. "A Systematic Review of European Electricity Market Design Options," Energies, MDPI, vol. 16(9), pages 1-26, April.
    5. Alexander Roth & Carlos Gaete-Morales & Dana Kirchem & Wolf-Peter Schill, 2023. "Power sector benefits of flexible heat pumps," Papers 2307.12918, arXiv.org, revised Oct 2024.
    6. Monika Zimmermann & Florian Ziel, 2024. "Spatial Weather, Socio-Economic and Political Risks in Probabilistic Load Forecasting," Papers 2408.00507, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    2. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    3. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    5. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    7. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    8. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    9. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
    10. Hast, Aira & Rinne, Samuli & Syri, Sanna & Kiviluoma, Juha, 2017. "The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity," Energy, Elsevier, vol. 137(C), pages 775-788.
    11. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    12. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    13. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    14. Cynthia Boysen & Cord Kaldemeyer & Simon Hilpert & Ilja Tuschy, 2019. "Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems," Energies, MDPI, vol. 12(6), pages 1-19, March.
    15. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    16. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    17. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    18. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    19. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.