IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v313y2022ics0306261922000964.html
   My bibliography  Save this article

Two-stage robust energy storage planning with probabilistic guarantees: A data-driven approach

Author

Listed:
  • Yan, Chao
  • Geng, Xinbo
  • Bie, Zhaohong
  • Xie, Le

Abstract

Shorter-term (e.g., hourly) uncertainties, which are not explicitly accounted for in conventional power system planning practice, become imperative in the longer-term planning with deepening penetration of renewable energy resources. This paper addresses this central issue in power system planning: the challenges induced by the increasing short-term and long-term uncertainties and the pivotal opportunities from the rapidly growing flexible resources (e.g., storage devices). By leveraging the abundant operation data, we propose a data-driven power system planning framework based on robust optimization and the scenario approach. The proposed framework considers a broad range of operation conditions and provides rigorous theoretical guarantees on the future risk of planning decisions. By connecting two-stage robust optimization with the scenario approach theory, we show that the operation risk level of the robust solution can be adaptable to the risk preference set by planners. The theoretical guarantees hold true for any distribution, and the proposed approach is scalable towards real-world power systems. Furthermore, we show that the column-and-constraint generation algorithm, which is a popular algorithm to solve two-stage robust optimization problems, is capable of tightening theoretical guarantees. We substantiate this framework through a planning problem of energy storage in a power grid with significant renewable penetration. Case studies are performed on large-scale test systems (modified IEEE 118-bus system) to illustrate the theoretical bounds as well as the scalability of the proposed algorithm.

Suggested Citation

  • Yan, Chao & Geng, Xinbo & Bie, Zhaohong & Xie, Le, 2022. "Two-stage robust energy storage planning with probabilistic guarantees: A data-driven approach," Applied Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922000964
    DOI: 10.1016/j.apenergy.2022.118623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    2. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    3. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    4. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xinran & Ding, Tao & Zhang, Xiaosheng & Huang, Yuhan & Li, Li & Zhang, Qinglei & Li, Fangxing, 2023. "A robust reliability evaluation model with sequential acceleration method for power systems considering renewable energy temporal-spatial correlation," Applied Energy, Elsevier, vol. 340(C).
    2. Li, Junkai & Ge, Shaoyun & Liu, Hong & Wang, Chengshan & Li, Huiqiang & Wang, Liyong, 2024. "Domestic P2P energy market design considering network reconfiguration and usage fees: Bi-level nonlinear programming and exact clearing algorithm," Applied Energy, Elsevier, vol. 368(C).
    3. Wu, Yunyun & Fang, Jiakun & Ai, Xiaomeng & Xue, Xizhen & Cui, Shichang & Chen, Xia & Wen, Jinyu, 2023. "Robust co-planning of AC/DC transmission network and energy storage considering uncertainty of renewable energy," Applied Energy, Elsevier, vol. 339(C).
    4. Li, Yahui & Sun, Yuanyuan & Wang, Qingyan & Sun, Kaiqi & Li, Ke-Jun & Zhang, Yan, 2023. "Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kramer, Anja & Krebs, Vanessa & Schmidt, Martin, 2021. "Strictly and Γ-robust counterparts of electricity market models: Perfect competition and Nash–Cournot equilibria," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    3. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    4. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    5. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    7. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    8. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    9. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    10. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    11. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    12. Khalid A. Alnowibet & Ahmad M. Alshamrani & Adel F. Alrasheedi, 2023. "A Bilevel Stochastic Optimization Framework for Market-Oriented Transmission Expansion Planning Considering Market Power," Energies, MDPI, vol. 16(7), pages 1-15, April.
    13. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    14. Calafiore, Giuseppe Carlo & Parino, Francesco & Zino, Lorenzo & Rizzo, Alessandro, 2023. "Dynamic planning of a two-dose vaccination campaign with uncertain supplies," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1269-1278.
    15. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    16. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.
    17. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    18. Jinwoo Jeong & Heewon Shin & Hwachang Song & Byongjun Lee, 2018. "A Countermeasure for Preventing Flexibility Deficit under High-Level Penetration of Renewable Energies: A Robust Optimization Approach," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    19. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    20. Khoirunnisa Rohadatul Aisy Muslihin & Endang Rusyaman & Diah Chaerani, 2022. "Conic Duality for Multi-Objective Robust Optimization Problem," Mathematics, MDPI, vol. 10(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922000964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.