IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics030626192200054x.html
   My bibliography  Save this article

Renewable jet fuel supply chain network design: Application of direct monetary incentives

Author

Listed:
  • Ebrahimi, Sajad
  • Haji Esmaeili, Seyed Ali
  • Sobhani, Ahmad
  • Szmerekovsky, Joseph

Abstract

Currently, the global aviation industry uses around 341 billion liters of jet fuel per year, with demand predicted to grow by 50% by the end of 2050. Renewable jet fuel (RJF) may cut greenhouse gas emissions (GHG), increase fuel diversity for the aviation industry, and promote rural economies. The commercialization of RJF has been delayed due to a shortage of sustainable biomass resources. This study recommends using winter carinata crops as a reliable biomass feedstock in the southeastern US states, where the availability of resources will be investigated in each agricultural zone. RJF production is more expensive than traditional jet fuel production. Investors and legislators need to learn more about prospective federal financial initiatives, such as subsidies and grants, to help with RJF supply chain implementation. In this paper, using a mathematical programming approach, we designed an RJF supply chain and then investigated the effects of three direct monetary incentive programs, including producer credit program (PCP), biomass crop assistance program (BCAP), and biorefinery assistance program (BAP), to accelerate the commercialization of RJF manufacturing. According to the findings, the amount of incentives through PCP needed to fulfill 50% of the RJF demand was assessed to cover 16.70% of the total costs, while the BCAP could reach the commercialization threshold by receiving incentives for 22.84% of the biomass purchasing cost. Furthermore, having the BAP covering 89.39% of the annual capital and operating costs could help commercialize RJF production. This study also evaluated the effects of changes in renewable fuel prices, demand fulfillment rates, biomass yield rates, and the price of biomass feedstock and its resulting meal on the profitability of the supply chain. The study's findings will advise policymakers and investors on developing the RJF supply chain given various financial assistance programs and subsidies.

Suggested Citation

  • Ebrahimi, Sajad & Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph, 2022. "Renewable jet fuel supply chain network design: Application of direct monetary incentives," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s030626192200054x
    DOI: 10.1016/j.apenergy.2022.118569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200054X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    3. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    4. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    5. Mohamed Abdul Ghani, N. Muhammad Aslaam & Vogiatzis, Chrysafis & Szmerekovsky, Joseph, 2018. "Biomass feedstock supply chain network design with biomass conversion incentives," Energy Policy, Elsevier, vol. 116(C), pages 39-49.
    6. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    9. Bacenetti, Jacopo & Restuccia, Andrea & Schillaci, Gianpaolo & Failla, Sabina, 2017. "Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment," Renewable Energy, Elsevier, vol. 112(C), pages 444-456.
    10. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
    12. Leila, Mohamed & Whalen, Joann & Bergthorson, Jeffrey, 2018. "Strategic spatial and temporal design of renewable diesel and biojet fuel supply chains: Case study of California, USA," Energy, Elsevier, vol. 156(C), pages 181-195.
    13. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    14. Chu, Pei Lin & Vanderghem, Caroline & MacLean, Heather L. & Saville, Bradley A., 2017. "Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil," Applied Energy, Elsevier, vol. 198(C), pages 401-409.
    15. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    16. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    17. Nóia Júnior, Rogério de Souza & Fraisse, Clyde W. & Bashyal, Mahesh & Mulvaney, Michael J. & Seepaul, Ramdeo & Zientarski Karrei, Mauricio A. & Iboyi, Joseph Enye & Perondi, Daniel & Cerbaro, Vinicius, 2022. "Brassica carinata as an off-season crop in the southeastern USA: Determining optimum sowing dates based on climate risks and potential effects on summer crop yield," Agricultural Systems, Elsevier, vol. 196(C).
    18. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    19. Huang, Endai & Zhang, Xiaolei & Rodriguez, Luis & Khanna, Madhu & de Jong, Sierk & Ting, K.C. & Ying, Yibin & Lin, Tao, 2019. "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    2. Riccardo Erriu & Edoardo Marcucci & Valerio Gatta, 2024. "Facilitating a Sustainable Aviation Fuel Transition in Italy," Energies, MDPI, vol. 17(14), pages 1-19, July.
    3. Zhang, Yanzi & Berenguer, Gemma & Zhang, Zhi-Hai, 2024. "A subsidized reverse supply chain in the Chinese electronics industry," Omega, Elsevier, vol. 122(C).
    4. Sajad Ebrahimi & Joseph Szmerekovsky & Bahareh Golkar & Seyed Ali Haji Esmaeili, 2023. "Designing a Renewable Jet Fuel Supply Chain: Leveraging Incentive Policies to Drive Commercialization and Sustainability," Mathematics, MDPI, vol. 11(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    2. Sajad Ebrahimi & Joseph Szmerekovsky & Bahareh Golkar & Seyed Ali Haji Esmaeili, 2023. "Designing a Renewable Jet Fuel Supply Chain: Leveraging Incentive Policies to Drive Commercialization and Sustainability," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    3. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    4. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    5. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    6. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    7. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    8. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    9. Hombach, Laura Elisabeth & Walther, Grit, 2015. "Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model," European Journal of Operational Research, Elsevier, vol. 245(1), pages 286-295.
    10. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    11. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.
    12. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    13. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    14. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
    16. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    17. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    18. Osmani, Atif & Zhang, Jun, 2014. "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, Elsevier, vol. 70(C), pages 514-528.
    19. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s030626192200054x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.