IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920313544.html
   My bibliography  Save this article

Connecting circular economy and energy industry: A techno-economic study for the Åland Islands

Author

Listed:
  • Kiviranta, Kirsikka
  • Thomasson, Tomi
  • Hirvonen, Jonne
  • Tähtinen, Matti

Abstract

Energy plays an essential role in circular economy because circular activities such as material processing require power and heat. In parallel, the rate of the transition to renewable energy is not adequate to meet the increasing energy demands. The objective of the study is to evaluate whether circular economy could increase the value of variable renewable energy investments and hence accelerate the transition towards renewable energy. The study involves a combined energy system and material flow analysis. The study is performed on a selected case region as the processes in circular economy and the availability of renewable energies are always local and depend on regional conditions. The Åland Islands was used as a case platform in the study as the electricity generation capacity from wind power in the region is expected to increase significantly in the near future resulting in high variability in the local power supply. Four alternative scenarios are analyzed in which the variable regional renewable energy supply exceeding the local demand is integrated for different purposes: power exports, circular economy, partly electrified transportation sector and district heating. With the highest annual system net profit (0.72 M€), integrating the power production peaks of variable renewable energy into circular economy was found to outweigh the annual economic benefits of power exports (−0.43 M€), the partly electrified transportation sector (−0.50 M€) and district heating (−0.27 M€). Therefore, the value obtained from the products derived from circular processes increased the value of the renewable energy system and would hence promote investments in renewable energy in the region.

Suggested Citation

  • Kiviranta, Kirsikka & Thomasson, Tomi & Hirvonen, Jonne & Tähtinen, Matti, 2020. "Connecting circular economy and energy industry: A techno-economic study for the Åland Islands," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313544
    DOI: 10.1016/j.apenergy.2020.115883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cross, Sam & Padfield, David & Ant-Wuorinen, Risto & King, Phillip & Syri, Sanna, 2017. "Benchmarking island power systems: Results, challenges, and solutions for long term sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1269-1291.
    2. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    3. Garcia Latorre, Francisco Javier & Quintana, Jose Juan & de la Nuez, Ignacio, 2019. "Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island," Renewable Energy, Elsevier, vol. 134(C), pages 186-193.
    4. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    5. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.
    6. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danilo Boffa & Antonio Prencipe & Armando Papa & Christian Corsi & Mario Sorrentino, 2023. "Boosting circular economy via the b-corporation roads. The effect of the entrepreneurial culture and exogenous factors on sustainability performance," International Entrepreneurship and Management Journal, Springer, vol. 19(2), pages 523-561, June.
    2. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    3. Sahar AlMashaqbeh & Jose Eduardo Munive-Hernandez, 2023. "Risk Analysis under a Circular Economy Context Using a Systems Thinking Approach," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    2. Tomi Thomasson & Kirsikka Kiviranta & Antton Tapani & Matti Tähtinen, 2021. "Flexibility from Combined Heat and Power: A Techno-Economic Study for Fully Renewable Åland Islands," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    4. Meschede, Henning & Esparcia, Eugene A. & Holzapfel, Peter & Bertheau, Paul & Ang, Rosario C. & Blanco, Ariel C. & Ocon, Joey D., 2019. "On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    6. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    8. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    9. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    10. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    11. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    12. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    13. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    14. López, A.I. & Ramírez-Díaz, A. & Castilla-Rodríguez, I. & Gurriarán, J. & Mendez-Perez, J.A., 2023. "Wind farm energy surplus storage solution with second-life vehicle batteries in isolated grids," Energy Policy, Elsevier, vol. 173(C).
    15. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
    16. Mimica, Marko & Dominković, Dominik F. & Kirinčić, Vedran & Krajačić, Goran, 2022. "Soft-linking of improved spatiotemporal capacity expansion model with a power flow analysis for increased integration of renewable energy sources into interconnected archipelago," Applied Energy, Elsevier, vol. 305(C).
    17. Javier Mendoza-Vizcaino & Andreas Sumper & Samuel Galceran-Arellano, 2017. "PV, Wind and Storage Integration on Small Islands for the Fulfilment of the 50-50 Renewable Electricity Generation Target," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    18. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    19. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    20. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.