IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920303640.html
   My bibliography  Save this article

Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data

Author

Listed:
  • Li, Yanmei
  • Cui, Yifei
  • Cai, Bofeng
  • Guo, Jingpeng
  • Cheng, Tianhai
  • Zheng, Fengjie

Abstract

Owing to global climate change and increased environmental pollution, China faces the dual responsibility of reducing CO2 emissions and controlling PM2.5 pollution. This study compares the spatial characteristics of PM2.5 concentrations and CO2 emissions using 10 km × 10 km grid data. The increase and decrease of CO2 emissions and PM2.5 concentrations are divided into four quadrants, which indicates four different conditions. Then, spatial autocorrelation method is conducted to analysis the spatial relationships. The empirical results show that (1) In the four quadrants, the increase of CO2 emissions and the decrease of PM2.5 concentrations accounted for the highest proportion (25.9%). (2) The spatial differences in CO2 emissions are large, but the PM2.5 concentrations show strong spatial aggregation. (3) China’s three major urban agglomerations contain more than half of the areas in which both CO2 emissions and PM2.5 concentrations increased, and the Pearl River Delta urban agglomeration exhibits the best synergistic reduction effect. By contrast, the Beijing–Tianjin–Hebei urban agglomeration has the worst synergistic reduction of CO2 emissions and PM2.5 concentrations. (4) At the urban level, as a typical city in the Beijing–Tianjin–Hebei urban agglomeration, Tianjin's overreliance on heavy chemical industries has led to co-increases in its CO2 emissions and PM2.5 concentrations. Shaoxing and Jiangmen, in the Yangtze River Delta and Pearl River Delta urban agglomeration, are among the few cities where CO2 emissions and PM2.5 concentrations have both been reduced. Finally, this paper suggests some policy implications of these findings.

Suggested Citation

  • Li, Yanmei & Cui, Yifei & Cai, Bofeng & Guo, Jingpeng & Cheng, Tianhai & Zheng, Fengjie, 2020. "Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303640
    DOI: 10.1016/j.apenergy.2020.114852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xueting & Burnett, J. Wesley & Fletcher, Jerald J., 2013. "Spatial Analysis of China Provincial-Level CO2 Emission Intensity," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149006, Agricultural and Applied Economics Association.
    2. Sébastien Dessus & David O'Connor, 2003. "Climate Policy without Tears CGE-Based Ancillary Benefits Estimates for Chile," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 287-317, July.
    3. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2018. "The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model," Resources Policy, Elsevier, vol. 58(C), pages 268-276.
    5. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    6. Cao, Chaoji & Cui, XueQin & Cai, Wenjia & Wang, Can & Xing, Lu & Zhang, Ning & Shen, Shudong & Bai, Yuqi & Deng, Zhu, 2019. "Incorporating health co-benefits into regional carbon emission reduction policy making: A case study of China’s power sector," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    8. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    9. Dong, Huijuan & Dai, Hancheng & Dong, Liang & Fujita, Tsuyoshi & Geng, Yong & Klimont, Zbigniew & Inoue, Tsuyoshi & Bunya, Shintaro & Fujii, Minoru & Masui, Toshihiko, 2015. "Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis," Applied Energy, Elsevier, vol. 144(C), pages 165-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijian Liu & Lian Cai & Yabin Zhang, 2023. "Co-Benefits of China’s Carbon Emissions Trading Scheme: Impact Mechanism and Spillover Effect," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    2. Chen, Jun, 2023. "Mitigating nitrogen dioxide air pollution: The roles and effect of national smart city pilots in China," Energy, Elsevier, vol. 263(PA).
    3. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    4. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    5. Ma, Jianhong & Wang, Ning & Chen, Zihao & Wang, Libo & Xiong, Qiyang & Chen, Peilin & Zhang, Hongxia & Zheng, Ying & Chen, Zhan-Ming, 2024. "Accounting and decomposition of China's CO2 emissions 1981–2021," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    2. Zhongyao Cai & Xiaohui Yang & Huaxing Lin & Xinyu Yang & Ping Jiang, 2022. "Study on the Co-Benefits of Air Pollution Control and Carbon Reduction in the Yellow River Basin: An Assessment Based on a Spatial Econometric Model," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    3. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    4. Huachao Yang & Ting Gan & Wei Liang & Xianchun Liao, 2022. "Can policies aimed at reducing carbon dioxide emissions help mitigate haze pollution? An empirical analysis of the emissions trading system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1959-1980, February.
    5. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    6. Xi Xie & Yuwei Weng & Wenjia Cai, 2018. "Co-Benefits of CO 2 Mitigation for NO X Emission Reduction: A Research Based on the DICE Model," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    7. Lili Sun & Huijuan Cui & Quansheng Ge & Caspar Daniel Adenutsi & Xining Hao, 2020. "Spatial Pattern of a Comprehensive f E Index for Provincial Carbon Emissions in China," Energies, MDPI, vol. 13(10), pages 1-18, May.
    8. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    9. Wang, Xiaojun & Chen, Yiping & Chen, Jingjing & Mao, Bingjing & Peng, Lihong & Yu, Ang, 2022. "China's CO2 regional synergistic emission reduction: Killing two birds with one stone?," Energy Policy, Elsevier, vol. 168(C).
    10. Yang Yang & Ji-Qin Ni & Weiqing Bao & Lei Zhao & Guang Hui Xie, 2019. "Potential Reductions in Greenhouse Gas and Fine Particulate Matter Emissions Using Corn Stover for Ethanol Production in China," Energies, MDPI, vol. 12(19), pages 1-14, September.
    11. Zhao, Xueting & Burnett, J. Wesley & Lacombe, Donald J., 2014. "Province-level Convergence of China CO2 Emission Intensity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169403, Agricultural and Applied Economics Association.
    12. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    13. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    14. Wesseh, Presley K. & Lin, Boqiang, 2018. "Optimal carbon taxes for China and implications for power generation, welfare, and the environment," Energy Policy, Elsevier, vol. 118(C), pages 1-8.
    15. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    16. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    17. repec:spo:wpecon:info:hdl:2441/10184 is not listed on IDEAS
    18. Thierry Mayer, 2006. "Policy Coherence for Development: A Background Paper on Foreign Direct Investment," OECD Development Centre Working Papers 253, OECD Publishing.
    19. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    20. Mathieu-Bolh, Nathalie, 2017. "Can tax reforms help achieve sustainable development?," Resource and Energy Economics, Elsevier, vol. 50(C), pages 135-163.
    21. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.