IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919317544.html
   My bibliography  Save this article

The impact of different strategies for generation shift keys (GSKs) on the flow-based market coupling domain: A model-based analysis of Central Western Europe

Author

Listed:
  • Schönheit, David
  • Weinhold, Richard
  • Dierstein, Constantin

Abstract

The trading of electricity across zones relies on cross-border capacities, provided by transmission system operators. The target design of the European Union for capacity calculations is flow-based market coupling, a method that provides trading domains while taking into account grid restrictions. Flow-based market coupling heavily relies on Generation Shift Keys, an essential predictive parameter, translating zonal balance changes that originate from market coupling into nodal injections and consequent line flow changes. This analysis quantifies the effect of different Generation Shift Key strategies on the market coupling domains and individual network elements. A strategy entails suppositions regarding which generating units partake in market changes and to what extent. For this, a novel method for base case computations is proposed that relies on matching historical reference flows of network elements. The results show that different strategies substantially alter the shape and size of flow-based market coupling domains and have a statistically significant impact on individual network elements. For many lines, the average line flow sensitivity to market changes differs between 1% and 5% across strategies and up to 10% for a few lines. Furthermore, the analysis details how the n-1 security criterion influences the composition of domain constraints and to what extent network elements are affected by it. Particularly with regard to the planned geographical expansion of flow-based market coupling and changing regulatory demands for transmission system operators, this work attests to the importance of developing accurate and transparent flow-based market coupling parameters and model-based representations.

Suggested Citation

  • Schönheit, David & Weinhold, Richard & Dierstein, Constantin, 2020. "The impact of different strategies for generation shift keys (GSKs) on the flow-based market coupling domain: A model-based analysis of Central Western Europe," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317544
    DOI: 10.1016/j.apenergy.2019.114067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    2. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    3. Friedrich Kunz & Mario Kendziorski & Wolf-Peter Schill & Jens Weibezahn & Jan Zepter & Christian von Hirschhausen & Philipp Hauser & Matthias Zech & Dominik Möst & Sina Heidari & Björn Felten & Christ, 2017. "Electricity, Heat and Gas Sector Data for Modelling the German System," Data Documentation 92, DIW Berlin, German Institute for Economic Research.
    4. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bakhshideh Zad, Bashir & Toubeau, Jean-François & Bruninx, Kenneth & Vatandoust, Behzad & De Grève, Zacharie & Vallée, François, 2022. "Supervised learning-assisted modeling of flow-based domains in European resource adequacy assessments," Applied Energy, Elsevier, vol. 325(C).
    2. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    3. Leila Mirtajadini & Shamsollah Shirin Bakhsh & Mir Hossein Mousavi & Kioumars Heydari & Saman Yousefvand, 2023. "Prediction of Electricity Trade Partners Based on the Network Theory: The West Asia Community," Foreign Trade Review, , vol. 58(4), pages 544-557, November.
    4. Rafael Finck, 2021. "Impact of Flow Based Market Coupling on the European Electricity Markets," Sustainability Nexus Forum, Springer, vol. 29(2), pages 173-186, June.
    5. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    6. Schönheit, David & Bruninx, Kenneth & Kenis, Michiel & Möst, Dominik, 2022. "Improved selection of critical network elements for flow-based market coupling based on congestion patterns," Applied Energy, Elsevier, vol. 306(PA).
    7. Marie Girod & Efthymios Karangelos & Emily Little & Viktor Terrier & Jean-Yves Bourmaud & Virginie Dussartre & Oualid Jouini & Yannick Perez, 2022. "Improving cross-border capacity for near real-time balancing," Post-Print hal-03894205, HAL.
    8. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).
    9. Bucksteeg, Michael & Voswinkel, Simon & Blumberg, Gerald, 2024. "Improving flow-based market coupling by integrating redispatch potential―Evidence from a large-scale model," Energy Policy, Elsevier, vol. 188(C).
    10. Ovaere, Marten & Kenis, Michiel & Van den Bergh, Kenneth & Bruninx, Kenneth & Delarue, Erik, 2023. "The effect of flow-based market coupling on cross-border exchange volumes and price convergence in Central Western European electricity markets," Energy Economics, Elsevier, vol. 118(C).
    11. Kenis, Michiel & Bruninx, Kenneth & Delarue, Erik, 2024. "Regulatory incentives for transmission system operators under flow-based market coupling," Utilities Policy, Elsevier, vol. 87(C).
    12. Poplavskaya, Ksenia & Totschnig, Gerhard & Leimgruber, Fabian & Doorman, Gerard & Etienne, Gilles & de Vries, Laurens, 2020. "Integration of day-ahead market and redispatch to increase cross-border exchanges in the European electricity market," Applied Energy, Elsevier, vol. 278(C).
    13. Schönheit, David & Dierstein, Constantin & Möst, Dominik, 2021. "Do minimum trading capacities for the cross-zonal exchange of electricity lead to welfare losses?," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    2. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 60, pages 176-185.
    4. J. Micha Steinhäuser & Klaus Eisenack, 2015. "Spatial incidence of large-scale power plant curtailment costs," Working Papers V-379-15, University of Oldenburg, Department of Economics, revised Jul 2015.
    5. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    6. Schlecht, Ingmar & Weigt, Hannes, 2014. "Swissmod - a model of the Swiss electricity market," Working papers 2014/04, Faculty of Business and Economics - University of Basel.
    7. Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz, 2016. "European Electricity Grid Infrastructure Expansion in a 2050 Context," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    8. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    9. Allard, Stéphane & Mima, Silvana & Debusschere, Vincent & Quoc, Tuan Tran & Criqui, Patrick & Hadjsaid, Nouredine, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Energy Economics, Elsevier, vol. 87(C).
    10. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    11. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    12. Gerbaulet, C. & Weber, A., 2018. "When regulators do not agree: Are merchant interconnectors an option? Insights from an analysis of options for network expansion in the Baltic Sea region," Energy Policy, Elsevier, vol. 117(C), pages 228-246.
    13. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    14. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    15. Steinhäuser, J. Micha & Eisenack, Klaus, 2020. "How market design shapes the spatial distribution of power plant curtailment costs," Energy Policy, Elsevier, vol. 144(C).
    16. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    17. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    18. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.
    19. Friedrich Kunz & Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, , vol. 37(3_suppl), pages 81-100, December.
    20. Jonas Egerer and Wolf-Peter Schill, 2014. "Power System Transformation toward Renewables: Investment Scenarios for Germany," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).

    More about this item

    Keywords

    Flow-based market coupling; Cross-border trading capacities; Zonal market coupling; Construction of predictive parameters; Energy system optimization models; Congestion forecast;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.