IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919314928.html
   My bibliography  Save this article

Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications

Author

Listed:
  • Li, Zhongjie
  • Li, Terek
  • Yang, Zhengbao
  • Naguib, Hani E.

Abstract

In this paper, we present a 0.33 W piezoelectric and electromagnetic hybrid energy harvester to tackle the problem of efficiently harnessing energy from low-frequency vibrations. Two types of transduction cores-one piezoelectric element and two sets of magnets and coils, are embedded into a compact design. Several techniques are employed to enhance the performance of the harvester. A pair of truss mechanisms are added into the system to amplify the strain of the piezoelectric element. A stopper is used to induce impact to take advantage of the frequency up conversion effect as well as nonlinearity. We used an array made of multiple small cubic magnets and alternative magnet arrangement rather than one magnet block, for abrupt magnetic flux density changes. Experimental results based on a fabricated prototype validate the proposed techniques that work collectively and enable the harvester to yield a maximum peak power more than 0.33 W at resonance under an excitation of 0.70 g. We also examined the capability of the harvester for self-powered applications. The harvester displays excellent charging performance to millifarad or farad-scale capacitors. An LED array consisting of 99 diodes was lit up in real time. More importantly, experimental results indicate that not just can the harvester simultaneously power a temperature and humidity sensor, and a calculator, but also when the excitation stops, the remaining charges stored can power them for ~20.38 min and ~8.33 min, respectively. This study can be of great significance for high-performance energy harvesting and further development of self-powered sensing and battery-free electronic systems.

Suggested Citation

  • Li, Zhongjie & Li, Terek & Yang, Zhengbao & Naguib, Hani E., 2019. "Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314928
    DOI: 10.1016/j.apenergy.2019.113805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    2. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    3. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    4. Li, Zhongjie & Jiang, Xiaomeng & Xu, Wanqing & Gong, Ying & Peng, Yan & Zhong, Songyi & Xie, Shaorong, 2022. "Performance comparison of electromagnetic generators based on different circular magnet arrangements," Energy, Elsevier, vol. 258(C).
    5. Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
    6. Castellano-Aldave, Carlos & Carlosena, Alfonso & Iriarte, Xabier & Plaza, Aitor, 2023. "Ultra-low frequency multidirectional harvester for wind turbines," Applied Energy, Elsevier, vol. 334(C).
    7. Cai, Mingjing & Wang, Jiahua & Liao, Wei-Hsin, 2020. "Self-powered smart watch and wristband enabled by embedded generator," Applied Energy, Elsevier, vol. 263(C).
    8. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    9. Chen, Keyu & Gao, Qiang & Fang, Shitong & Zou, Donglin & Yang, Zhengbao & Liao, Wei-Hsin, 2021. "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, Elsevier, vol. 298(C).
    10. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    11. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.