IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919314096.html
   My bibliography  Save this article

Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification

Author

Listed:
  • Singh, P.
  • Déparrois, N.
  • Burra, K.G.
  • Bhattacharya, S.
  • Gupta, A.K.

Abstract

High-temperature gasification is an attractive alternative technology for clean energy production from plastic wastes and provides a sustainable pathway for their disposal. Waste cross-linked polyethylene (XLPE) offers good potential energy recovery source because of its high energy density of around 47 MJ/kg that can be converted to syngas using pyrolysis or gasification. CO2 assisted gasification can provide clean and efficient syngas that can be converted further to valuable products. This can effectively decrease the carbon foot-print from the utilization of polyethylene wastes. This paper examines pyrolysis and CO2 assisted gasification of XLPE waste with focus on the kinetics, product yield and syngas yield properties (yield of carbon monoxide, hydrogen, and hydrocarbon) at different temperatures. Pyrolysis experiments were carried out to estimate the impact of the gasifying agent over pyrolysis. Pyrolysis and CO2 assisted gasification were conducted at several temperatures in the range 973 K to 1173 K in steps of 50 K. The results were compared with high-, medium-, low-density polyethylene as well as ultra-high molecular weight polyethylene. Higher temperatures provided increased syngas yields from pyrolysis. The activation energy of pyrolysis from single-step kinetic analysis of TGA data revealed increases with an increase in branching and cross-linking. The reaction profiles of the single step of all the samples (except medium density polyethylene) were found to be closely represented by the Avrami-Erofeev models. Results also revealed that gasification generated more syngas, hydrogen, and energy than pyrolysis. Gasification consumed the CO2 to generate syngas with a mass-specific heating value similar to natural gas suggesting efficient utilization of both CO2 and XLPEs for clean and efficient energy production.

Suggested Citation

  • Singh, P. & Déparrois, N. & Burra, K.G. & Bhattacharya, S. & Gupta, A.K., 2019. "Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314096
    DOI: 10.1016/j.apenergy.2019.113722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, I. & Gupta, A.K., 2009. "Syngas yield during pyrolysis and steam gasification of paper," Applied Energy, Elsevier, vol. 86(9), pages 1813-1821, September.
    2. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    3. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    4. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    5. Ahmed, I. & Gupta, A.K., 2009. "Characteristics of cardboard and paper gasification with CO2," Applied Energy, Elsevier, vol. 86(12), pages 2626-2634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2022. "Kinetics and characteristics of activator-assisted pyrolysis of municipal waste plastic and chlorine removal using hot filter filled with absorbents," Energy, Elsevier, vol. 238(PB).
    2. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    3. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    4. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    5. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
    6. Katleho Keneuwe Khoaele & Oluwatoyin Joseph Gbadeyan & Viren Chunilall & Bruce Sithole, 2023. "The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    7. Zou, Jiecheng & Zhao, Lanxun & Hu, Qiang & Yao, Dingding & Yang, Haiping, 2024. "Pyrolysis and catalytic reforming of disposable plastic waste for syngas production with adjustable H2/CO ratio," Applied Energy, Elsevier, vol. 362(C).
    8. Siyuan Zhang & Chen Liang & Zhiping Zhu & Ruifang Cui, 2024. "Experimental Study on the Thermal Reduction of CO 2 by Activated Solid Carbon-Based Fuels," Energies, MDPI, vol. 17(9), pages 1-22, May.
    9. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    2. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    3. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    4. Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
    5. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    6. Ahmed, I.I. & Gupta, A.K., 2011. "Particle size, porosity and temperature effects on char conversion," Applied Energy, Elsevier, vol. 88(12), pages 4667-4677.
    7. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    8. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    10. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    11. Wang, Zhiwei & Burra, Kiran G. & Li, Xueqin & Zhang, Mengju & He, Xiaofeng & Lei, Tingzhou & Gupta, Ashwani K., 2020. "CO2-assisted gasification of polyethylene terephthalate with focus on syngas evolution and solid yield," Applied Energy, Elsevier, vol. 276(C).
    12. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    13. Ahmed, I. & Jangsawang, W. & Gupta, A.K., 2012. "Energy recovery from pyrolysis and gasification of mangrove," Applied Energy, Elsevier, vol. 91(1), pages 173-179.
    14. Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
    15. Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
    16. Wang, Chao & Jiang, Zhiqiang & Song, Qingbin & Liao, Mingzheng & Weng, Jiahong & Gao, Rui & Zhao, Ming & Chen, Ying & Chen, Guanyi, 2021. "Investigation on hydrogen-rich syngas production from catalytic co-pyrolysis of polyvinyl chloride (PVC) and waste paper blends," Energy, Elsevier, vol. 232(C).
    17. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    18. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    19. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    20. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.