IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp312-326.html
   My bibliography  Save this article

Remote sensing for vegetation monitoring in carbon capture storage regions: A review

Author

Listed:
  • Chen, Yun
  • Guerschman, Juan P
  • Cheng, Zhibo
  • Guo, Longzhu

Abstract

Carbon Capture and Storage (CCS) is an emerging climate change mitigation technology which prevents carbon dioxide (CO2) from entering the atmosphere, so as to reduce greenhouse gas emissions. Environmental monitoring in CCS sites is critical for ensuring that any CO2 leakage and its effect on biota, especially vegetation, is detectable. It also plays an important role in creating a social license to operate and assuring the general public that the mechanisms for leak detection and remediation are in place. This review overviews current remote sensing technologies for vegetation monitoring of CCS sites/regions (with a focus on rangelands and pastures), including medium-to-high resolution satellite, aerial (both manned and unmanned aircrafts) and in situ sensors and methods. Our literature survey has pointed out that remote sensing, particularly hyperspectral sensors, can accurately detect CO2 leakage derived effects on vegetation. It can compensate the two main drawbacks of operational systems for detecting these effects over large areas. One is the areas affected tend to be relatively small (1–15 m); and the other is symptoms in vegetation tissues tend to be similar to other stresses, such as nutrient or water deficiency. With this in mind, we have recommend that a comprehensive system should be put in place. It integrates continuous monitoring with ad-hoc detection to assess vegetation conditions in a planned CCS site. Site-based pheonocams and area-based medium-resolution satellite remote sensing sources can be used to compare any given point in time (e.g. the injection point) with the condition at the same location in the past. Before an injection commences, a baseline assessment should be conducted using the combination of high-resolution aerial hyperspectral imaging and medium-resolution long-term data from Landsat sensors. Further acquisition of high-resolution aerial imagery (ideally hyperspectral) is particularly useful following specific detected CO2 leaking events. Aiming at bridging the gaps between research, development and implementation of CCS, this review will contribute to environmental and social impacts of sustainable energy policies, including climate change mitigation and environmental pollution reduction.

Suggested Citation

  • Chen, Yun & Guerschman, Juan P & Cheng, Zhibo & Guo, Longzhu, 2019. "Remote sensing for vegetation monitoring in carbon capture storage regions: A review," Applied Energy, Elsevier, vol. 240(C), pages 312-326.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:312-326
    DOI: 10.1016/j.apenergy.2019.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    2. Daegeun Ko & Gayoung Yoo & Seong‐Taek Yun & Haegeun Chung, 2016. "Impacts of CO 2 leakage on plants and microorganisms: A review of results from CO 2 release experiments and storage sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 319-338, June.
    3. Jiang Jinbao & Michael D Steven & Cai Qingkong & He Ruyan & Guo Haiqiang & Chen Yunhao, 2014. "Detecting bean stress response to CO 2 leakage with the utilization of leaf and canopy spectral derivative ratio," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(4), pages 468-480, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Ying & Jiang, Jinbao & Yu, Zijian & Liu, Ziwei & Pan, Yingyang & Xiong, Kangni, 2024. "A knowledge guided deep learning framework for underground natural gas micro-leaks detection from hyperspectral imagery," Energy, Elsevier, vol. 294(C).
    2. João Lucas Della-Silva & Carlos Antonio da Silva Junior & Mendelson Lima & Paulo Eduardo Teodoro & Marcos Rafael Nanni & Luciano Shozo Shiratsuchi & Larissa Pereira Ribeiro Teodoro & Guilherme Fernand, 2022. "CO 2 Flux Model Assessment and Comparison between an Airborne Hyperspectral Sensor and Orbital Multispectral Imagery in Southern Amazonia," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    3. Quanfeng Li & Wei Liu & Guoming Du & Bonoua Faye & Huanyuan Wang & Yunkai Li & Lu Wang & Shijin Qu, 2022. "Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County," Land, MDPI, vol. 11(6), pages 1-14, May.
    4. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    2. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    3. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    4. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    5. Jiang, Jinbao & Steven, Michael D. & He, Ruyan & Chen, Yunhao & Du, Peijun, 2016. "Identification of plants responding to CO2 leakage stress using band depth and the full width at half maxima of canopy spectra," Energy, Elsevier, vol. 100(C), pages 73-81.
    6. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Mark E. Capron & Jim R. Stewart & Antoine de Ramon N’Yeurt & Michael D. Chambers & Jang K. Kim & Charles Yarish & Anthony T. Jones & Reginald B. Blaylock & Scott C. James & Rae Fuhrman & Martin T. She, 2020. "Restoring Pre-Industrial CO 2 Levels While Achieving Sustainable Development Goals," Energies, MDPI, vol. 13(18), pages 1-30, September.
    8. Salas, D.A. & Boero, A.J. & Ramirez, A.D., 2024. "Life cycle assessment of bioenergy with carbon capture and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Lu, Jingwen & Wang, Zhonghui & Su, Sheng & Liu, Hao & Ma, Zhiwei & Ren, Qiangqiang & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Single-step integrated CO2 absorption and mineralization using fly ash coupled mixed amine solution: Mineralization performance and reaction kinetics," Energy, Elsevier, vol. 286(C).
    10. Du, Ying & Jiang, Jinbao & Yu, Zijian & Liu, Ziwei & Pan, Yingyang & Xiong, Kangni, 2024. "A knowledge guided deep learning framework for underground natural gas micro-leaks detection from hyperspectral imagery," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:312-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.