IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp1181-1190.html
   My bibliography  Save this article

Sabatier based power-to-gas system: Heat exchange network design and thermoeconomic analysis

Author

Listed:
  • Toro, Claudia
  • Sciubba, Enrico

Abstract

The present global energy scenario has to face the technical and economic challenges of the global CO2 emissions mitigation. The two main technological paths followed are on one hand the increase of renewable share and on the other the implementation of carbon capturing and storage solutions. While the main drawback of the first one is the need to include an energy storage to compensate for the fluctuations of the sources, the one of the latter is related to the high CO2 sequestration costs. Sabatier based power-to-gas systems are potential answers for both the above described issues. Object of this paper is the modelling, process design and simulation of a CO2 methanation plant based on the Sabatier reaction. Since the main issue of power-to-methane storage technology is its low overall conversion efficiency, the pinch analysis approach has been applied to enhance the energy recovery that represents a key factor in the increase of the plant global efficiency. An exergy and thermoeconomic analysis of the proposed plant was performed in order to evaluate the main sources of irreversibility and to calculate the CH4 production costs as a function of the main plant parameters. A Sabatier conversion yield of 93.48% has been obtained producing 0.42 kg of CH4 per each kg of captured CO2 with an improved cost of 53 €/MWh. The results of the study have shown the great potentials of this solution as an “energy storage” and CO2 capture facility.

Suggested Citation

  • Toro, Claudia & Sciubba, Enrico, 2018. "Sabatier based power-to-gas system: Heat exchange network design and thermoeconomic analysis," Applied Energy, Elsevier, vol. 229(C), pages 1181-1190.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1181-1190
    DOI: 10.1016/j.apenergy.2018.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. McKenna, R.C. & Bchini, Q. & Weinand, J.M. & Michaelis, J. & König, S. & Köppel, W. & Fichtner, W., 2018. "The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg," Applied Energy, Elsevier, vol. 212(C), pages 386-400.
    3. McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    2. Jalili, Mohammad & Ghazanfari Holagh, Shahriyar & Chitsaz, Ata & Song, Jian & Markides, Christos N., 2023. "Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 329(C).
    3. Ipsakis, Dimitris & Varvoutis, Georgios & Lampropoulos, Athanasios & Papaefthimiou, Spiros & Marnellos, George E. & Konsolakis, Michalis, 2021. "Τechno-economic assessment of industrially-captured CO2 upgrade to synthetic natural gas by means of renewable hydrogen," Renewable Energy, Elsevier, vol. 179(C), pages 1884-1896.
    4. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2023. "Waste heat recovery potential in the thermochemical copper–chlorine cycle for hydrogen production: Development of an efficient and cost-effective heat exchanger network," Energy, Elsevier, vol. 282(C).
    5. Ramirez-Corredores, M.M. & Diaz, Luis A. & Gaffney, Anne M. & Zarzana, Christopher A., 2021. "Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    7. Maximilian Borning & Larissa Doré & Michael Wolff & Julian Walter & Tristan Becker & Grit Walther & Albert Moser, 2020. "Opportunities and Challenges of Flexible Electricity-Based Fuel Production for the European Power System," Sustainability, MDPI, vol. 12(23), pages 1-26, November.
    8. Sarı, Ahmet & Hekimoğlu, Gökhan & Karabayır, Yasemin & Sharma, R.K. & Arslanoğlu, Hasan & Gencel, Osman & Tyagi, V.V., 2022. "Capric-stearic acid mixture impregnated carbonized waste sugar beet pulp as leak-resistive composite phase change material with effective thermal conductivity and thermal energy storage performance," Energy, Elsevier, vol. 247(C).
    9. Rodriguez-Pastor, D.A. & Garcia-Guzman, A. & Marqués-Valderrama, I. & Ortiz, C. & Carvajal, E. & Becerra, J.A. & Soltero, V.M. & Chacartegui, R., 2024. "A flexible methanol-to-methane thermochemical energy storage system (TCES) for gas turbine (GT) power production," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    2. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    3. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    5. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    6. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    7. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    8. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    9. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    10. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    11. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    13. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    14. Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
    15. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    16. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    17. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    18. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:1181-1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.