IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v223y2018icp215-228.html
   My bibliography  Save this article

An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties

Author

Listed:
  • Wang, Shouxiang
  • Wang, Kai
  • Teng, Fei
  • Strbac, Goran
  • Wu, Lei

Abstract

Considering uncertain power outputs of distributed generations (DGs) and load fluctuations, energy storage system (ESS) represents a valuable asset to provide support for the smooth operation of active distribution networks. This paper proposes an affine arithmetic-based multi-objective optimization method for the optimal operation of ESSs in active distribution networks with uncertainties. Affine arithmetic is applied to the optimization model for handling uncertainties of DGs and loads. Two objectives are formulated with affine parameters including the minimization of total active power losses and the minimization of system voltage deviations. The affine arithmetic-based forward-backward sweep power flow is first improved by the proposed pruning strategy of noisy symbols. Then, the affine arithmetic-based non-dominated sorting genetic algorithm II (AA-NSGAII) is used to solve the multi-objective optimization problem for ESSs operation under uncertain environment. Furthermore, three types of indices with respect to convergence, diversity, and uncertainty are defined for performance analysis. Numerical studies on a modified IEEE 33-bus system with embedded DGs and ESSs show the effectiveness and superiority of the proposed method. The optimization results demonstrate that the obtained Pareto front has better convergence and lower conservativeness in comparison to the interval arithmetic-based NSGA-II. A multi-period case considering seasonality of DGs and loads is further simulated to show the applicability in real applications.

Suggested Citation

  • Wang, Shouxiang & Wang, Kai & Teng, Fei & Strbac, Goran & Wu, Lei, 2018. "An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties," Applied Energy, Elsevier, vol. 223(C), pages 215-228.
  • Handle: RePEc:eee:appene:v:223:y:2018:i:c:p:215-228
    DOI: 10.1016/j.apenergy.2018.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yang & Feng, Bo & Li, Guoqing & Qi, Junjian & Zhao, Dongbo & Mu, Yunfei, 2018. "Optimal distributed generation planning in active distribution networks considering integration of energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1073-1081.
    2. Chaabene, Maher & Ammar, Mohsen Ben & Elhajjaji, Ahmed, 2007. "Fuzzy approach for optimal energy-management of a domestic photovoltaic panel," Applied Energy, Elsevier, vol. 84(10), pages 992-1001, October.
    3. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    4. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    5. Yekini Suberu, Mohammed & Wazir Mustafa, Mohd & Bashir, Nouruddeen, 2014. "Energy storage systems for renewable energy power sector integration and mitigation of intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 499-514.
    6. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    7. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    8. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    9. Cavallaro, Fausto, 2010. "Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems," Applied Energy, Elsevier, vol. 87(2), pages 496-503, February.
    10. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khojasteh, Meysam & Faria, Pedro & Lezama, Fernando & Vale, Zita, 2023. "A hierarchy model to use local resources by DSO and TSO in the balancing market," Energy, Elsevier, vol. 267(C).
    2. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    3. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    4. Zhang, Jiarui & Mu, Yunfei & Wu, Zhijun & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2024. "Two-stage affine assessment method for flexible ramping capacity: An inverter heat pump virtual power plant case," Applied Energy, Elsevier, vol. 365(C).
    5. Zhang, Jingrui & Zhou, Yulu & Li, Zhuoyun & Cai, Junfeng, 2021. "Three-level day-ahead optimal scheduling framework considering multi-stakeholders in active distribution networks: Up-to-down approach," Energy, Elsevier, vol. 219(C).
    6. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    7. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    8. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    9. Salem Alkhalaf & Tomonobu Senjyu & Ayat Ali Saleh & Ashraf M. Hemeida & Al-Attar Ali Mohamed, 2019. "A MODA and MODE Comparison for Optimal Allocation of Distributed Generations with Different Load Levels," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    10. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    11. Wang, Meng & Yu, Hang & Lin, Xiaoyu & Jing, Rui & He, Fangjun & Li, Chaoen, 2020. "Comparing stochastic programming with posteriori approach for multi-objective optimization of distributed energy systems under uncertainty," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    5. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    6. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    10. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    11. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    12. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    13. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    15. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    16. Yerzhigit Bapin & Mehdi Bagheri & Vasilios Zarikas, 2019. "Optimal Allocation of Spinning Reserves in Interconnected Energy Systems with Demand Response Using a Bivariate Wind Prediction Model," Energies, MDPI, vol. 12(20), pages 1-21, October.
    17. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    18. Isuru, Mohasha & Hotz, Matthias & Gooi, H.B. & Utschick, Wolfgang, 2020. "Network-constrained thermal unit commitment fortexhybrid AC/DC transmission grids under wind power uncertainty," Applied Energy, Elsevier, vol. 258(C).
    19. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    20. Zhang, Shenxi & Cheng, Haozhong & Li, Ke & Tai, Nengling & Wang, Dan & Li, Furong, 2018. "Multi-objective distributed generation planning in distribution network considering correlations among uncertainties," Applied Energy, Elsevier, vol. 226(C), pages 743-755.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:223:y:2018:i:c:p:215-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.