IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp1250-1266.html
   My bibliography  Save this article

Organic and inorganic fouling in heat exchangers – Industrial case study: Analysis of fouling state

Author

Listed:
  • Diaz-Bejarano, E.
  • Behranvand, E.
  • Coletti, F.
  • Mozdianfard, M.R.
  • Macchietto, S.

Abstract

A comprehensive model-based thermo-hydraulic methodology is used to investigate fouling behaviour in refinery heat exchangers where high concentration of inorganics in the deposits was reported. The method combines a data-driven analysis of plant measurements (including pressure drop) with a model-based analysis using advanced models of shell-and-tube heat exchangers undergoing fouling. A deposit model capable of tracking composition and deposition history was extended to include thermal-conductivity mixing models appropriate for various deposit structures. Substantial new and useful information can be extracted from the plant measurements in comparison to current practice: the thickness, the effective conductivity, and the radial conductivity and composition profiles of the deposits, reflecting the exchanger operation history. Episodes of rapid and acute fouling, and deposition of inorganic materials could be identified and quantified. A validation of the approach was carried out by (i) a comparison of averaged predicted and experimental inorganic weight fractions in a mixed deposit sample collected at the end of run, and (ii) an initial comparison of predicted radial inorganics profiles and experimental ones (obtained with SEM-EDX) in deposits from similar exchangers. Both steps yielded surprisingly good agreement. The study indicates that the method employed represents a new powerful, model-based analysis tool for monitoring, diagnosis and troubleshooting of fouling in heat exchangers.

Suggested Citation

  • Diaz-Bejarano, E. & Behranvand, E. & Coletti, F. & Mozdianfard, M.R. & Macchietto, S., 2017. "Organic and inorganic fouling in heat exchangers – Industrial case study: Analysis of fouling state," Applied Energy, Elsevier, vol. 206(C), pages 1250-1266.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1250-1266
    DOI: 10.1016/j.apenergy.2017.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    2. Markowski, Mariusz & Trafczynski, Marian & Urbaniec, Krzysztof, 2013. "Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 755-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalal Faraj & Khaled Chahine & Mostafa Mortada & Thierry Lemenand & Haitham S. Ramadan & Mahmoud Khaled, 2022. "Eco-Efficient Vehicle Cooling Modules with Integrated Diffusers—Thermal, Energy, and Environmental Analyses," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).
    3. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Shen, Chao & Lei, Zhuoyu & Lv, Guoquan & Ni, Long & Deng, Shiming, 2019. "Experimental performance evaluation of a novel anti-fouling wastewater source heat pump system with a wastewater tower," Applied Energy, Elsevier, vol. 236(C), pages 690-699.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    3. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    4. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    5. Tremblay, Veronique & Zmeureanu, Radu, 2014. "Benchmarking models for the ongoing commissioning of heat recovery process in a central heating and cooling plant," Energy, Elsevier, vol. 70(C), pages 194-203.
    6. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    7. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    8. Tian, Jiayang & Wang, Yufei & Feng, Xiao, 2016. "Simultaneous optimization of flow velocity and cleaning schedule for mitigating fouling in refinery heat exchanger networks," Energy, Elsevier, vol. 109(C), pages 1118-1129.
    9. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    10. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    11. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).
    12. Akpomiemie, Mary O. & Smith, Robin, 2018. "Cost-effective strategy for heat exchanger network retrofit," Energy, Elsevier, vol. 146(C), pages 82-97.
    13. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
    14. Fu, Chao & Gundersen, Truls, 2016. "Correct integration of compressors and expanders in above ambient heat exchanger networks," Energy, Elsevier, vol. 116(P2), pages 1282-1293.
    15. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Lal, Nathan S. & Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2018. "A novel Heat Exchanger Network Bridge Retrofit method using the Modified Energy Transfer Diagram," Energy, Elsevier, vol. 155(C), pages 190-204.
    17. S.M.A. Naqvi & Qiuwang Wang, 2019. "Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles," Energies, MDPI, vol. 12(3), pages 1-18, February.
    18. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    19. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    20. Trafczynski, Marian & Markowski, Mariusz & Urbaniec, Krzysztof, 2023. "Energy saving and pollution reduction through optimal scheduling of cleaning actions in a heat exchanger network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1250-1266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.