IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp794-807.html
   My bibliography  Save this article

Sensitivity analysis of acquisition granularity of photovoltaic output power to capacity configuration of energy storage systems

Author

Listed:
  • Han, Xiaojuan
  • Liu, Dahe
  • Liu, Jian
  • Kong, Lingda

Abstract

Acquisition granularity and acquisition span are two important indexes to analyze the active power of renewable energy power stations, and it is important for the analysis of the intermittent energy output power to determine the acquisition granularity of the data. An acquisition granularity calibration method of the photovoltaic output power based on data mining technology is proposed in this paper. The sensitivity changing characteristics of the time series and the sum of the output power are respectively extracted by the multi-scale descriptive statistical analysis and interpolation method. A “power trapezoidal continuous changing state” method is proposed to establish a multi-objective optimization model for the acquisition granularity calibration of the photovoltaic output power. Genetic algorithm (GA) and Particle swarm optimization (PSO) algorithm are respectively used to solve the model and determine the optimal acquisition granularity of the photovoltaic output power. The sensitivity of the acquisition granularity of the data to the capacity of the energy storage system is analyzed, and the energy storage system with the optimal acquisition granularity can’t only effectively smooth the fluctuation of the photovoltaic output power but also keep the main information of the data. The simulation tests of the annual actual operation data at a photovoltaic power station with the installed capacity of 14MW in China verify the validity of the model. The simulation results show when the acquisition granularity of the photovoltaic output power takes 45s, it can satisfy the accuracy of the required data for the capacity configuration of the energy storage system. The method proposed in this paper provides a theoretical basis for the intermittent energy applications and has a certain engineering application prospects.

Suggested Citation

  • Han, Xiaojuan & Liu, Dahe & Liu, Jian & Kong, Lingda, 2017. "Sensitivity analysis of acquisition granularity of photovoltaic output power to capacity configuration of energy storage systems," Applied Energy, Elsevier, vol. 203(C), pages 794-807.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:794-807
    DOI: 10.1016/j.apenergy.2017.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    2. Coughlin, Katie & Murthi, Aditya & Eto, Joseph, 2014. "Multi-scale analysis of wind power and load time series data," Renewable Energy, Elsevier, vol. 68(C), pages 494-504.
    3. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    4. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    5. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    6. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    8. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    9. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    10. Hu, Yuan & Bie, Zhaohong & Ding, Tao & Lin, Yanling, 2016. "An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 167(C), pages 280-293.
    11. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    12. Carlos Segura & Carlos A. Coello Coello & Gara Miranda & Coromoto León, 2016. "Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization," Annals of Operations Research, Springer, vol. 240(1), pages 217-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lago, Jesus & De Ridder, Fjo & Mazairac, Wiet & De Schutter, Bart, 2019. "A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy," Applied Energy, Elsevier, vol. 248(C), pages 640-655.
    2. Mingqi Wang & Xinqiao Zheng, 2017. "Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Liu, Jicheng & Lu, Yunyuan, 2023. "A task matching model of photovoltaic storage system under the energy blockchain environment - based on GA-CLOUD-GS algorithm," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    3. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
    4. Diego Viesi & Gregorio Borelli & Silvia Ricciuti & Giovanni Pernigotto & Md Shahriar Mahbub, 2024. "Modeling the Optimal Transition of an Urban Neighborhood towards an Energy Community and a Positive Energy District," Energies, MDPI, vol. 17(16), pages 1-30, August.
    5. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    6. Bellocchi, S. & De Iulio, R. & Guidi, G. & Manno, M. & Nastasi, B. & Noussan, M. & Prina, M.G. & Roberto, R., 2020. "Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy," Energy, Elsevier, vol. 202(C).
    7. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    8. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
    9. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    10. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    11. Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.
    12. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    13. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).
    15. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    16. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    17. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    18. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    19. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:794-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.