IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v175y2016icp429-434.html
   My bibliography  Save this article

Novel Ag@C nanocables supported Pd anodes and its implication in energy conversion using direct liquid fuel cells

Author

Listed:
  • Bai, Zhengyu
  • Huang, Rumeng
  • Shi, Min
  • Zhang, Qing
  • Yang, Lin
  • Yang, Zongxian
  • Zhang, Jiujun

Abstract

In this work, renewable ethylene glycol (EG) was developed as a potential fuel for direct liquid fuel cells (DLFCs) with Ag@C nanocables by immobilization of Palladium (Pd/Ag@C) anodes for sustainable electric power generation. The results confirm that the obtained nanocable is composed of a silver nanowire as a core and a carbonaceous layer as a shell. According to TEM, the resulting Pd nanoparticles are well-distributed on the surface of the Ag@C, and the mean size of the Pd nanoparticles is 4.4nm. Electrochemical behavior tests indicate that the Pd/Ag@C can achieve a maximum current density of 1027.4mAmg−1Pd based on a half-cell reaction on EG fuel, suggesting that EG is a suitable fuel for DLFCs. It is concluded that the as-prepared Pd/Ag@C would be a potential candidate as an anode in energy conversion using DLFCs. Furthermore, the current study confirmed the practical applicability of EG as a direct fuel with Pd/Ag@C anode applied in DEGFCs may have a great effect on future energy systems.

Suggested Citation

  • Bai, Zhengyu & Huang, Rumeng & Shi, Min & Zhang, Qing & Yang, Lin & Yang, Zongxian & Zhang, Jiujun, 2016. "Novel Ag@C nanocables supported Pd anodes and its implication in energy conversion using direct liquid fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 429-434.
  • Handle: RePEc:eee:appene:v:175:y:2016:i:c:p:429-434
    DOI: 10.1016/j.apenergy.2016.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    2. Qu, Jifa & Wang, Wei & Chen, Yubo & Wang, Feng & Ran, Ran & Shao, Zongping, 2015. "Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes," Applied Energy, Elsevier, vol. 148(C), pages 1-9.
    3. F. Javier Rodríguez Varela & Sergio Fraire Luna & Oumarou Savadogo, 2009. "Synthesis and Evaluation of Highly Tolerant Pd Electrocatalysts as Cathodes in Direct Ethylene Glycol Fuel Cells (DEGFC)," Energies, MDPI, vol. 2(4), pages 1-13, October.
    4. Lin, Cheng-Lan & Wang, Chih-Chung, 2016. "Enhancement of electroactivity of platinum–tungsten trioxide nanocomposites with NaOH-treated carbon support toward methanol oxidation reaction," Applied Energy, Elsevier, vol. 164(C), pages 1043-1051.
    5. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    6. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes, R.S. & De Bortoli, A.L., 2016. "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1292-1301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "Impact of manufacturing processes on proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 225(C), pages 1022-1032.
    2. Shahgaldi, Samaneh & Alaefour, Ibrahim & Li, Xianguo, 2018. "The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability," Applied Energy, Elsevier, vol. 217(C), pages 295-302.
    3. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    4. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    5. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    6. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    7. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    10. D.M.F. Santos & J.R.B. Lourenço & D. Macciò & A. Saccone & C.A.C. Sequeira & J.L. Figueiredo, 2020. "Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys," Energies, MDPI, vol. 13(7), pages 1-21, April.
    11. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    12. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    13. Antony Plait & Pierre Saenger & David Bouquain, 2024. "Fuel Cell System Modeling Dedicated to Performance Estimation in the Automotive Context," Energies, MDPI, vol. 17(15), pages 1-15, August.
    14. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    15. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    17. Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
    18. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    19. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:429-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.