IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1662-1669.html
   My bibliography  Save this article

Investigation on evaluation criteria of axial wall heat conduction under two classical thermal boundary conditions

Author

Listed:
  • Lin, Mei
  • Wang, Qiu-Wang
  • Guo, Zhixiong

Abstract

Investigation to evaluate axial wall heat conduction has been conducted for heat transfer in a laminar flow circular tube with two classical thermal boundary conditions at the outside wall. The tube ends are either adiabatic or with heat losses. The simulation is three-dimensional with various wall materials, wall thicknesses and tube lengths. A wide range of Peclet number from 7 to 14,000 is considered. Three evaluation criterion parameters including the axial conduction number, the modified axial conduction number, and the temperature gradient number are comprehensively studied to quantify the influence of axial wall heat conduction. Under the constant outside wall temperature boundary condition, the temperature gradient number is presented to assess the relevance of the axial wall heat conduction. The approximate range of the effect of axial wall heat conduction on the local Nusselt number for the fully developed flow is also obtained.

Suggested Citation

  • Lin, Mei & Wang, Qiu-Wang & Guo, Zhixiong, 2016. "Investigation on evaluation criteria of axial wall heat conduction under two classical thermal boundary conditions," Applied Energy, Elsevier, vol. 162(C), pages 1662-1669.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1662-1669
    DOI: 10.1016/j.apenergy.2015.04.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adelaja, Adekunle O. & Dirker, Jaco & Meyer, Josua P., 2014. "Effects of the thick walled pipes with convective boundaries on laminar flow heat transfer," Applied Energy, Elsevier, vol. 130(C), pages 838-845.
    2. Ozceyhan, Veysel & Gunes, Sibel & Buyukalaca, Orhan & Altuntop, Necdet, 2008. "Heat transfer enhancement in a tube using circular cross sectional rings separated from wall," Applied Energy, Elsevier, vol. 85(10), pages 988-1001, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saranmanduh Borjigin & Ting Ma & Min Zeng & Qiuwang Wang, 2018. "A Numerical Study of Small-Scale Longitudinal Heat Conduction in Plate Heat Exchangers," Energies, MDPI, vol. 11(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Bogusław Jasiński, 2021. "Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 2: Thermal Performance," Energies, MDPI, vol. 14(15), pages 1-18, July.
    2. Muñoz, Javier & Abánades, Alberto, 2011. "Analysis of internal helically finned tubes for parabolic trough design by CFD tools," Applied Energy, Elsevier, vol. 88(11), pages 4139-4149.
    3. Ma, Ting & Wang, Qiu-wang & Zeng, Min & Chen, Yi-tung & Liu, Yang & Nagarajan, Vijaisri, 2012. "Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger," Applied Energy, Elsevier, vol. 99(C), pages 393-401.
    4. Piotr Bogusław Jasiński, 2021. "Numerical Study of Heat Transfer Intensification in a Circular Tube Using a Thin, Radiation-Absorbing Insert. Part 1: Thermo-Hydraulic Characteristics," Energies, MDPI, vol. 14(15), pages 1-18, July.
    5. Liu, X.P. & Niu, J.L., 2014. "An optimal design analysis method for heat recovery devices in building applications," Applied Energy, Elsevier, vol. 129(C), pages 364-372.
    6. Kumar, Sharad & Saini, R.P., 2009. "CFD based performance analysis of a solar air heater duct provided with artificial roughness," Renewable Energy, Elsevier, vol. 34(5), pages 1285-1291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1662-1669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.