IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp258-268.html
   My bibliography  Save this article

Multi-functional heat pumps integration in power plants for CO2 capture and sequestration

Author

Listed:
  • Alabdulkarem, Abdullah
  • Hwang, Yunho
  • Radermacher, Reinhard

Abstract

Amine absorption is a common method for CO2 removal from flue gas of a power plant. The heat of regeneration, which is usually provided by steam extracted from the power cycle, reduces the power plant efficiency. In this paper, seven configurations of heat pumps integrated with CO2 capture plant of a natural gas combined cycle (NGCC) power plant were evaluated using HYSYS software. The heat pump provides the regeneration heat as well as processes heating and cooling. Forty-one working fluids were investigated, and the most promising ones were R-141b and NH3, with as much as 3.1% savings in the efficiency. When the heat pump cooling and heating capacities were to be considered in the efficiency calculations, the enhancement in efficiency becomes as high as 13.6%.

Suggested Citation

  • Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2015. "Multi-functional heat pumps integration in power plants for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 147(C), pages 258-268.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:258-268
    DOI: 10.1016/j.apenergy.2015.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindqvist, Karl & Jordal, Kristin & Haugen, Geir & Hoff, Karl Anders & Anantharaman, Rahul, 2014. "Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants," Energy, Elsevier, vol. 78(C), pages 758-767.
    2. Horuz, Ilhami & Kurt, Bener, 2010. "Absorption heat transformers and an industrial application," Renewable Energy, Elsevier, vol. 35(10), pages 2175-2181.
    3. Bakhtiari, Bahador & Fradette, Louis & Legros, Robert & Paris, Jean, 2010. "Opportunities for the integration of absorption heat pumps in the pulp and paper process," Energy, Elsevier, vol. 35(12), pages 4600-4606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ding & Sun, Lei & Xie, Yonghui, 2023. "Performance evaluation of CO2 pressurization and storage system combined with S–CO2 power generation process and absorption refrigeration cycle," Energy, Elsevier, vol. 273(C).
    2. Cai, Jingyong & Zhou, Haihua & Xu, Lijie & Shi, Zhengrong & Zhang, Tao & Ji, Jie, 2022. "Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump," Renewable Energy, Elsevier, vol. 185(C), pages 32-46.
    3. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    4. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    5. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    2. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    3. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    4. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    6. Bahlouli, Keyvan & Khoshbakhti Saray, Rahim, 2016. "Energetic and exergetic analyses of a new energy system for heating and power production purposes," Energy, Elsevier, vol. 106(C), pages 390-399.
    7. S. Mohammad S. Mahmoudi & Sina Salehi & Mortaza Yari & Marc A. Rosen, 2017. "Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers," Energies, MDPI, vol. 10(4), pages 1-28, April.
    8. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    9. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    10. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    11. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2015. "Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture," Energy, Elsevier, vol. 85(C), pages 594-608.
    12. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    13. Dagilis, Vytautas & Uldinskas, Žilvinas & Vaitkus, Liutauras & Jouhara, Hussam & Poškas, Robertas, 2021. "The simulation and analysis of wood fuel low-grade heat," Energy, Elsevier, vol. 218(C).
    14. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    15. van de Bor, D.M. & Infante Ferreira, C.A., 2013. "Quick selection of industrial heat pump types including the impact of thermodynamic losses," Energy, Elsevier, vol. 53(C), pages 312-322.
    16. Jixuan Wang & Wensheng Liu & Xin Meng & Xiaozhen Liu & Yanfeng Gao & Zuodong Yu & Yakai Bai & Xin Yang, 2020. "Study on the Coupling Effect of a Solar-Coal Unit Thermodynamic System with Carbon Capture," Energies, MDPI, vol. 13(18), pages 1-14, September.
    17. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    18. Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
    19. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    20. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:258-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.