IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v137y2015icp292-300.html
   My bibliography  Save this article

New steam generation system for lead-cooled fast reactors, based on steam re-circulation through ejector

Author

Listed:
  • Damiani, Lorenzo
  • Revetria, Roberto

Abstract

The EBBSG (External Boiling Bayonet Steam Generator) system, proposed in previous publications, offers an alternative to the classical once-through high pressure steam generators. This system exploits the combination between the Loeffler external boiling scheme and the bayonet-tube steam generator and is expected to provide advantages in terms of safety while keeping good values of cycle performance and vessel size. The main disadvantages result in the increased size of the heat exchangers with respect to once-through steam boilers and in the need of steam blowers, as envisaged under the Loeffler scheme.

Suggested Citation

  • Damiani, Lorenzo & Revetria, Roberto, 2015. "New steam generation system for lead-cooled fast reactors, based on steam re-circulation through ejector," Applied Energy, Elsevier, vol. 137(C), pages 292-300.
  • Handle: RePEc:eee:appene:v:137:y:2015:i:c:p:292-300
    DOI: 10.1016/j.apenergy.2014.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914010551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damiani, Lorenzo & Prato, Alessandro Pini & Revetria, Roberto, 2014. "Innovative steam generation system for the secondary loop of “ALFRED” lead-cooled fast reactor demonstrator," Applied Energy, Elsevier, vol. 121(C), pages 207-218.
    2. Abram, Tim & Ion, Sue, 2008. "Generation-IV nuclear power: A review of the state of the science," Energy Policy, Elsevier, vol. 36(12), pages 4323-4330, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
    2. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    3. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    2. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    3. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    4. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    5. Brook, Barry W., 2012. "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case," Energy Policy, Elsevier, vol. 42(C), pages 4-8.
    6. Crespi, Francesco & Sánchez, David & Rodríguez, José M. & Gavagnin, Giacomo, 2020. "A thermo-economic methodology to select sCO2 power cycles for CSP applications," Renewable Energy, Elsevier, vol. 147(P3), pages 2905-2912.
    7. Ramana, M.V. & Saikawa, Eri, 2011. "Choosing a standard reactor: International competition and domestic politics in Chinese nuclear policy," Energy, Elsevier, vol. 36(12), pages 6779-6789.
    8. Hyeonmin Kim & Jung-Taek Kim & Jaehyuk Eoh & Dong-Won Lim, 2018. "Development of a Physics-Based Monitoring Algorithm Detecting CO 2 Ingress Accidents in a Sodium-Cooled Fast Reactor," Energies, MDPI, vol. 12(1), pages 1-15, December.
    9. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    10. Santos, Ricardo Luis Pereira dos & Rosa, Luiz Pinguelli & Arouca, Maurício Cardoso & Ribeiro, Alan Emanuel Duailibe, 2013. "The importance of nuclear energy for the expansion of Brazil's electricity grid," Energy Policy, Elsevier, vol. 60(C), pages 284-289.
    11. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    12. Qiuwen Wang & Hu Zhang & Puxin Zhu, 2023. "Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    13. Hui, Jiuwu, 2024. "Discrete-time integral terminal sliding mode load following controller coupled with disturbance observer for a modular high-temperature gas-cooled reactor," Energy, Elsevier, vol. 292(C).
    14. Faustino Moreno-Gamboa & Ana Escudero-Atehortua & César Nieto-Londoño, 2022. "Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    15. Sungjoo Lee & Byungun Yoon & Juneseuk Shin, 2016. "Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case," Sustainability, MDPI, vol. 8(10), pages 1-16, September.
    16. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    17. Lorenzo Malerba & Abderrahim Al Mazouzi & Marjorie Bertolus & Marco Cologna & Pål Efsing & Adrian Jianu & Petri Kinnunen & Karl-Fredrik Nilsson & Madalina Rabung & Mariano Tarantino, 2022. "Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations," Energies, MDPI, vol. 15(5), pages 1-48, March.
    18. Stephen Thomas & M. V. Ramana, 2022. "A hopeless pursuit? National efforts to promote small modular nuclear reactors and revive nuclear power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    19. Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
    20. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:137:y:2015:i:c:p:292-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.