IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v119y2014icp163-172.html
   My bibliography  Save this article

CLC in packed beds using syngas and CuO/Al2O3: Model description and experimental validation

Author

Listed:
  • Hamers, H.P.
  • Gallucci, F.
  • Cobden, P.D.
  • Kimball, E.
  • van Sint Annaland, M.

Abstract

The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al2O3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while also studying the (possible) carbon deposition and the effect of sulphur impurities on the stability of the carrier. Both experiments and simulations are used in this work. Cyclic experiments (oxidation with air and reduction with syngas) have been carried out in a lab scale packed bed reactor with 13wt% CuO/Al2O3. The experimental results were well described by a 1D reactor model, provided that critical attention was given to the reaction rate for the complete reduction reaction, including a dramatic decrease in reaction rate at high solid conversions. Feeding syngas (pH2=pCO=0.1bar) resulted in 1.1% carbon deposition of the feed. Steam was proven to be more effective in reducing carbon deposition than CO2. Moreover, it has been found that CuO/Al2O3 catalyzed the water gas shift reaction and the reaction rate was not permanently affected by exposure to H2S, two key factors for CLC operation. The results of this work imply that CuO/Al2O3 is an effective oxygen carrier as the first packed bed reactor in a TSCLC process and that the developed model is able to describe the performance at larger scales accurately.

Suggested Citation

  • Hamers, H.P. & Gallucci, F. & Cobden, P.D. & Kimball, E. & van Sint Annaland, M., 2014. "CLC in packed beds using syngas and CuO/Al2O3: Model description and experimental validation," Applied Energy, Elsevier, vol. 119(C), pages 163-172.
  • Handle: RePEc:eee:appene:v:119:y:2014:i:c:p:163-172
    DOI: 10.1016/j.apenergy.2013.12.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913010623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zixiang & Wu, Di & Yin, Fan & Sun, Liyan & Zeng, Dewang & Xiao, Rui, 2024. "Thermodynamic and kinetic analysis on the biomass syngas fueled chemical looping hydrogen generation process in fixed bed reactor," Energy, Elsevier, vol. 298(C).
    2. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    3. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    4. Penthor, Stefan & Zerobin, Florian & Mayer, Karl & Pröll, Tobias & Hofbauer, Hermann, 2015. "Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120kW pilot plant for gaseous fuels," Applied Energy, Elsevier, vol. 145(C), pages 52-59.
    5. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    6. Gu, Zhenhua & Li, Kongzhai & Wang, Hua & Qing, Shan & Zhu, Xing & Wei, Yonggang & Cheng, Xianming & Yu, He & Cao, Yan, 2016. "Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier," Applied Energy, Elsevier, vol. 163(C), pages 19-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:119:y:2014:i:c:p:163-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.