IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp66-73.html
   My bibliography  Save this article

The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power

Author

Listed:
  • Middleton, Richard S.
  • Eccles, Jordan K.

Abstract

Fossil fuels are an integral part of the US energy portfolio, playing a prominent role for current and future domestic energy security. A sustainable, low-carbon future will require CO2 to be captured from major coal and natural gas power plants. However, fossil fuel electricity generation CO2 emissions are typically highly variable throughout each day with daily generation profiles varying greatly between plants. We demonstrate that understanding this variability is absolutely critical for setting a suitable carbon price as well as identifying if and how much CO2 a power plant will capture. For example, we show that a CO2 emissions price (or tax) of anywhere between $85/tCO2 and $135/tCO2 will be required to incentivize a gas power plant to manage all its capturable CO2; this range is solely due to differences in CO2 emissions profile. Further, we show that the setting a carbon price is very sensitive to system-wide costs including the CO2 value for enhanced oil recovery and, in particular, the costs for CO2 transport and storage. We also find that, even though coal-fired plants are more CO2-intensive and thus incur greater CO2 management costs, coal plants require a significantly lower carbon price ($15/tCO2 lower) in order to encourage CO2 capture. We conclude that integrating fossil fuel power, particularly natural gas, into a large-scale CO2 capture and storage system is a complex problem that will require detailed research and modeling.

Suggested Citation

  • Middleton, Richard S. & Eccles, Jordan K., 2013. "The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power," Applied Energy, Elsevier, vol. 108(C), pages 66-73.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:66-73
    DOI: 10.1016/j.apenergy.2013.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman Mendelevitch & Johannes Herold & Pao-Yu Oei & Andreas Tissen, 2010. "CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe," Discussion Papers of DIW Berlin 1052, DIW Berlin, German Institute for Economic Research.
    2. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    3. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    4. Klokk, Ø. & Schreiner, P.F. & Pagès-Bernaus, A. & Tomasgard, A., 2010. "Optimizing a CO2 value chain for the Norwegian Continental Shelf," Energy Policy, Elsevier, vol. 38(11), pages 6604-6614, November.
    5. Michael J. Kuby & Jeffrey M. Bielicki & Richard S. Middleton, 2011. "Optimal Spatial Deployment of CO2 Capture and Storage Given a Price on Carbon," International Regional Science Review, , vol. 34(3), pages 285-305, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    2. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    3. Jeffrey M. Bielicki & Guillaume Calas & Richard S. Middleton & Minh Ha‐Duong, 2014. "National corridors for climate change mitigation: managing industrial CO 2 emissions in France," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 262-277, June.
    4. Cai, W. & Singham, D.I. & Craparo, E.M. & White, J.A., 2014. "Pricing Contracts Under Uncertainty in a Carbon Capture and Storage Framework," Energy Economics, Elsevier, vol. 43(C), pages 56-62.
    5. Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
    6. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    7. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    8. Sun, Liang & Chen, Wenying, 2013. "The improved ChinaCCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China," Applied Energy, Elsevier, vol. 112(C), pages 793-799.
    9. Dai, C. & Cai, Y.P. & Li, Y.P. & Sun, W. & Wang, X.W. & Guo, H.C., 2014. "Optimal strategies for carbon capture, utilization and storage based on an inexact mλ-measure fuzzy chance-constrained programming," Energy, Elsevier, vol. 78(C), pages 465-478.
    10. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    11. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    12. Brandon Poiencot & Christopher Brown, 2011. "An Optimal Centralized Carbon Dioxide Repository for Florida, USA," IJERPH, MDPI, vol. 8(4), pages 1-21, March.
    13. Phillips, Benjamin R. & Middleton, Richard S., 2012. "SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission," Energy Policy, Elsevier, vol. 43(C), pages 291-302.
    14. Knoope, M.M.J. & Ramírez, A. & Faaij, A.P.C., 2015. "The influence of uncertainty in the development of a CO2 infrastructure network," Applied Energy, Elsevier, vol. 158(C), pages 332-347.
    15. Richard S. Middleton & Jonathan S. Levine & Jeffrey M. Bielicki & Hari S. Viswanathan & J. William Carey & Philip H. Stauffer, 2015. "Jumpstarting commercial‐scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 241-253, June.
    16. Udayan Singh & Erica M. Loudermilk & Lisa M. Colosi, 2021. "Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 144-164, February.
    17. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
    18. Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW Kiel).
    19. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    20. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:66-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.