IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics0096300324004053.html
   My bibliography  Save this article

On the flexibility and loading maximization for weighted premiums

Author

Listed:
  • Psarrakos, Georgios
  • Vliora, Polyxeni

Abstract

The premium principle is a rule of pricing that adjusts premium with insurance risk and is the core of stating actuary insurance. This paper deals with a class of weighted premium principles that uses a positive parameter to add flexibility for an actuary to control the degree of risk aversion, and complements the study of flexibility on the modified variance premium initiated in Goovaerts et al. [9]. We apply our approach for some well-known premium principles, studying some theoretical properties, and we establish the nonmonotonic unimodal premium principles with respect to the loading parameter. Therefore, we obtain a loading maximization of weighted premiums, a useful tool to feasible contracts. We illustrate the results by some numerical examples.

Suggested Citation

  • Psarrakos, Georgios & Vliora, Polyxeni, 2024. "On the flexibility and loading maximization for weighted premiums," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004053
    DOI: 10.1016/j.amc.2024.128944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sendov, Hristo S. & Wang, Ying & Zitikis, Ricardas, 2011. "Log-supermodularity of weight functions, ordering weighted losses, and the loading monotonicity of weighted premiums," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 257-264, March.
    2. Paul Embrechts, 2000. "Actuarial versus Financial Pricing of Insurance," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(4), pages 17-26, March.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    4. Heilmann, Wolf-Rudiger, 1989. "Decision theoretic foundations of credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 77-95, March.
    5. Udo Kamps, 1998. "On a class of premium principles including the Esscher principle," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 1998(1), pages 75-80.
    6. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    7. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    8. Bartoszewicz, Jaroslaw, 2009. "On a representation of weighted distributions," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1690-1694, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    2. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    3. Sánchez-Sánchez, M. & Sordo, M.A. & Suárez-Llorens, A. & Gómez-Déniz, E., 2019. "Deriving Robust Bayesian Premiums Under Bands Of Prior Distributions With Applications," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 147-168, January.
    4. Boratyńska Agata, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Statistics Poland, vol. 22(3), pages 123-140, September.
    5. Urbina, Jilber & Guillén, Montserrat, 2013. "An application of capital allocation principles to operational risk," MPRA Paper 75726, University Library of Munich, Germany, revised Dec 2013.
    6. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.
    7. Agata Boratyńska, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 123-140, September.
    8. Emilio Gomez-Deniz & Enrique Calderin-Ojeda, 2010. "A study of Bayesian local robustness with applications in actuarial statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1537-1546.
    9. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    10. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    11. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2020. "Optimal Insurance under Maxmin Expected Utility," Papers 2010.07383, arXiv.org.
    12. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    13. Pan, Maolin & Wang, Rongming & Wu, Xianyi, 2008. "On the consistency of credibility premiums regarding Esscher principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 119-126, February.
    14. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    15. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    16. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    17. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    18. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    19. Zeng, Xudong, 2010. "Optimal reinsurance with a rescuing procedure," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 397-405, April.
    20. Das, S. & Kratz, M., 2012. "Alarm system for insurance companies: A strategy for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 53-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.