IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v465y2024ics009630032300574x.html
   My bibliography  Save this article

Fault estimation for nonlinear parameter-varying time-delayed systems

Author

Listed:
  • Peixoto, Márcia L.C.
  • Coutinho, Pedro H.S.
  • Nguyen, Anh-Tu
  • Guerra, Thierry-Marie
  • Palhares, Reinaldo M.

Abstract

A fault estimation method for a class of nonlinear parameter-varying systems subject to time-varying delay and unmeasured nonlinearities is presented. The unmeasured time-varying parameters are effectively handled using a sector-based condition approach. A gain-scheduling intermediate estimator is proposed to simultaneously estimate the system state and the unknown faults. Design conditions are derived based on Lyapunov–Krasovskii functional and integral inequality techniques. These conditions, expressed as linear matrix inequalities, ensure that the estimation error dynamics are input-to-state stable with respect to the time-derivative of the faults. Moreover, it is demonstrated that for the case of piecewise constant faults, the estimation error dynamics are exponentially stable. As a corollary result, conditions are also presented to design gain-scheduling intermediate estimators for nonlinear parameter-varying systems without time-varying delays. Three physically motivated examples are provided to demonstrate the effectiveness and practical interests of the proposed nonlinear estimation method.

Suggested Citation

  • Peixoto, Márcia L.C. & Coutinho, Pedro H.S. & Nguyen, Anh-Tu & Guerra, Thierry-Marie & Palhares, Reinaldo M., 2024. "Fault estimation for nonlinear parameter-varying time-delayed systems," Applied Mathematics and Computation, Elsevier, vol. 465(C).
  • Handle: RePEc:eee:apmaco:v:465:y:2024:i:c:s009630032300574x
    DOI: 10.1016/j.amc.2023.128405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032300574X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Baopeng & Wang, Yingchun & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Distributed finite-time fault estimation and fault-tolerant control for cyber-physical systems with matched uncertainties," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Jun-Wei Zhu & Guang-Hong Yang, 2017. "Fault accommodation for linear systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 316-323, January.
    3. J. Lauber & T.M. Guerra & M. Dambrine, 2011. "Air-fuel ratio control in a gasoline engine," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(2), pages 277-286.
    4. Du, Dongsheng & Cocquempot, Vincent & Jiang, Bin, 2019. "Robust fault estimation observer design for switched systems with unknown input," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 70-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiao-Qi & Guo, Shun & Long, Yue & Zhong, Guang-Xin, 2022. "Simultaneous fault detection and control for discrete-time switched systems under relaxed persistent dwell time switching," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Zhang, Jiancheng & Chadli, Mohammed & Wang, Yan, 2019. "A fixed-time observer for discrete-time singular systems with unknown inputs," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Ma, Zhen-Lei & Li, Xiao-Jian, 2022. "Data-driven fault detection for large-scale network systems: A mixed optimization approach," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    4. Li, Jiahao & Liu, Yu & Yu, Jinyong & Sun, Yiming & Liu, Mengmeng, 2021. "A new result of terminal sliding mode finite-time state and fault estimation for a class of descriptor switched systems," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    5. Ye, Hu & Cheng, Peng & Zhang, Xiang & He, Shuping & Zhang, Weidong, 2023. "Event-triggered-based H∞ control for Markov jump cyber-physical systems against denial-of-service attacks," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    6. Han, Yunrui & Zhao, Ying & Wang, Peng, 2021. "Finite-time rate anti-bump switching control for switched systems," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    7. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    8. Mu, Yunfei & Zhang, Huaguang & Yan, Yuqing & Wang, Yingchun, 2023. "A novel design approach to state and fault estimation for interconnected systems using distributed observer," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    9. Zhou, Zepeng & Zhu, Fanglai & Xu, Dezhi & Guo, Shenghui & Zhao, Younan, 2022. "Attack resilient control for vehicle platoon system with full states constraint under actuator faulty scenario," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    10. Han, Jian & Liu, Xiuhua & Wei, Xinjiang & Zhang, Huifeng & Hu, Xin, 2021. "Adjustable dimension descriptor observer based fault estimation of nonlinear system with unknown input," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    11. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    12. Oliveira, Pedro M. & Palma, Jonathan M. & Lacerda, Márcio J., 2022. "H2 state-feedback control for discrete-time cyber-physical uncertain systems under DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    13. Turki Alsuwian & Muhammad Tayyeb & Arslan Ahmed Amin & Muhammad Bilal Qadir & Saleh Almasabi & Mohammed Jalalah, 2022. "Design of a Hybrid Fault-Tolerant Control System for Air–Fuel Ratio Control of Internal Combustion Engines Using Genetic Algorithm and Higher-Order Sliding Mode Control," Energies, MDPI, vol. 15(15), pages 1-23, August.
    14. Tammo Zobel & Christian Schürch & Konstantinos Boulouchos & Christopher Onder, 2020. "Reduction of Cold-Start Emissions for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:465:y:2024:i:c:s009630032300574x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.