IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v451y2023ics009630032300187x.html
   My bibliography  Save this article

The enriched quadrilateral overlapping finite elements for time-harmonic acoustics

Author

Listed:
  • Gui, Qiang
  • Li, Wei
  • Chai, Yingbin

Abstract

The pronounced numerical dispersions and numerical anisotropy make solutions from the finite element model using low-order elements unreliable for the time-harmonic acoustic problems with fairly large wavenumber. In this work we propose a novel enriched quadrilateral overlapping elements for Helmholtz problems. In this scheme, the original overlapping elements are strengthened by the harmonic trigonometric functions stemming from the spectral techniques. Since all additional degrees of freedom are aligned on the vertex node of every overlapping element, the proposed method can be directly applied to the original finite element model without changing the mesh topology. Because of the enriched approximation space, the proposed method can significantly suppress the numerical dispersions with practically negligible numerical anisotropy, and can be more computationally efficient in providing comparable solution accuracy compared to the original scheme and the classic finite element method. Besides, the linear dependence issue is completely avoided and these enriched overlapping elements are distortion-insensitive. In this work, the original variational formulation is perturbed using the penalty method to impose the essential boundary conditions. Numerical experiments show that the developed method can reduce user interventions in mesh creation and adjustment, and is promising in practical engineering applications for time-harmonic acoustics.

Suggested Citation

  • Gui, Qiang & Li, Wei & Chai, Yingbin, 2023. "The enriched quadrilateral overlapping finite elements for time-harmonic acoustics," Applied Mathematics and Computation, Elsevier, vol. 451(C).
  • Handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s009630032300187x
    DOI: 10.1016/j.amc.2023.128018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032300187X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chai, Yingbin & Li, Wei & Liu, Zuyuan, 2022. "Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Yancheng Li & Sina Dang & Wei Li & Yingbin Chai, 2022. "Free and Forced Vibration Analysis of Two-Dimensional Linear Elastic Solids Using the Finite Element Methods Enriched by Interpolation Cover Functions," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    3. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. You, Xiangyu & Li, Wei & Chai, Yingbin, 2020. "A truly meshfree method for solving acoustic problems using local weak form and radial basis functions," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    5. Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
    6. Cong Liu & Shaosong Min & Yandong Pang & Yingbin Chai, 2023. "The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
    2. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    3. Xunbai Du & Sina Dang & Yuzheng Yang & Yingbin Chai, 2022. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis," Mathematics, MDPI, vol. 10(23), pages 1-27, December.
    4. Cong Liu & Shaosong Min & Yandong Pang & Yingbin Chai, 2023. "The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    5. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    6. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    7. Yang Zhang & Qiang Gui & Yuzheng Yang & Wei Li, 2022. "The Instability and Response Studies of a Top-Tensioned Riser under Parametric Excitations Using the Differential Quadrature Method," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    8. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    9. Cheng Chi & Fajie Wang & Lin Qiu, 2023. "A Novel Coupled Meshless Model for Simulation of Acoustic Wave Propagation in Infinite Domain Containing Multiple Heterogeneous Media," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    10. Wang, Fajie & Zhao, Qinghai & Chen, Zengtao & Fan, Chia-Ming, 2021. "Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    11. Yancheng Li & Sina Dang & Wei Li & Yingbin Chai, 2022. "Free and Forced Vibration Analysis of Two-Dimensional Linear Elastic Solids Using the Finite Element Methods Enriched by Interpolation Cover Functions," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    12. Qu, Wenzhen & Sun, Linlin & Li, Po-Wei, 2021. "Bending analysis of simply supported and clamped thin elastic plates by using a modified version of the LMFS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 347-357.
    13. Shiyuan E & Yanzhong Wang & Bin Xie & Fengxia Lu, 2023. "A Reliability-Based Robust Design Optimization Method for Rolling Bearing Fatigue under Cyclic Load Spectrum," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    14. Lin Chen & Wenzhi Xu & Zhuojia Fu, 2022. "A Novel Spatial–Temporal Radial Trefftz Collocation Method for 3D Transient Wave Propagation Analysis with Specified Sound Source Excitation," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    15. Meijun Zhou & Jiayu Qin & Zenan Huo & Fabio Giampaolo & Gang Mei, 2022. "epSFEM: A Julia-Based Software Package of Parallel Incremental Smoothed Finite Element Method (S-FEM) for Elastic-Plastic Problems," Mathematics, MDPI, vol. 10(12), pages 1-25, June.
    16. Liyuan Lan & Suifu Cheng & Xiatao Sun & Weiwei Li & Chao Yang & Fajie Wang, 2022. "A Fast Singular Boundary Method for the Acoustic Design Sensitivity Analysis of Arbitrary Two- and Three-Dimensional Structures," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    17. Dongdong Liu & Xing Wei & Chengbin Li & Chunguang Han & Xiaxi Cheng & Linlin Sun, 2022. "Transient Dynamic Response Analysis of Two-Dimensional Saturated Soil with Singular Boundary Method," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    18. Sun, Linlin & Fu, Zhuojia & Chen, Zhikang, 2023. "A localized collocation solver based on fundamental solutions for 3D time harmonic elastic wave propagation analysis," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    19. Jue Qu & Hao Guo & Hongjun Xue & Sina Dang & Yingchun Chen, 2022. "Experimental Study on Manned/Unmanned Thermal Environment in Radar Electronic Shelter Based on Different Air Supply Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    20. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s009630032300187x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.