IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v365y2020ics0096300319306861.html
   My bibliography  Save this article

A truly meshfree method for solving acoustic problems using local weak form and radial basis functions

Author

Listed:
  • You, Xiangyu
  • Li, Wei
  • Chai, Yingbin

Abstract

It has been known that numerical solutions to Helmholtz problems obtained using several numerical methodologies (e.g. finite element approach) are always plagued by the pollution error effect particularly for high wave numbers, giving rise to erroneous results of numerical acoustic wave. To mitigate this effect, a truly meshfree technique using a local weak form and radial basis functions is employed to analyze acoustic problems. On the basis of the local Petrov–Galerkin weak form, numerical integration is performed over the quadrature domains related to all field nodes, instead of the mesh grid required in the global Galerkin weak form like finite element approach and element-free Galerkin method. Hence, the present methodology is totally independent of the mesh grid either in forming shape functions, or in the integration procedure for system matrices. Also, owing to the use of radial point interpolation by passing all the relevant nodes, the constructed shape functions hold the practical feature of the Kronecker delta function, resulting in easy enforcement of the essential boundary condition as in finite element approach. The results of several numerical examples have shown that with same group of field nodes the present methodology can lead to much more accurate solutions than finite element approach, in particular for relatively high frequencies, and can also generate comparable solutions in comparison to other global Galerkin meshfree techniques.

Suggested Citation

  • You, Xiangyu & Li, Wei & Chai, Yingbin, 2020. "A truly meshfree method for solving acoustic problems using local weak form and radial basis functions," Applied Mathematics and Computation, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319306861
    DOI: 10.1016/j.amc.2019.124694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319306861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gui, Qiang & Li, Wei & Chai, Yingbin, 2023. "The enriched quadrilateral overlapping finite elements for time-harmonic acoustics," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    2. Qu, Wenzhen & Sun, Linlin & Li, Po-Wei, 2021. "Bending analysis of simply supported and clamped thin elastic plates by using a modified version of the LMFS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 347-357.
    3. Li, Yancheng & Liu, Cong & Li, Wei & Chai, Yingbin, 2023. "Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Yingbin Chai & Kangye Huang & Shangpan Wang & Zhichao Xiang & Guanjun Zhang, 2023. "The Extrinsic Enriched Finite Element Method with Appropriate Enrichment Functions for the Helmholtz Equation," Mathematics, MDPI, vol. 11(7), pages 1-25, March.
    5. Cong Liu & Shaosong Min & Yandong Pang & Yingbin Chai, 2023. "The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    6. Xunbai Du & Sina Dang & Yuzheng Yang & Yingbin Chai, 2022. "The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis," Mathematics, MDPI, vol. 10(23), pages 1-27, December.
    7. Chai, Yingbin & Li, Wei & Liu, Zuyuan, 2022. "Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Wang, Fajie & Zhao, Qinghai & Chen, Zengtao & Fan, Chia-Ming, 2021. "Localized Chebyshev collocation method for solving elliptic partial differential equations in arbitrary 2D domains," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    9. Sina Dang & Gang Wang & Yingbin Chai, 2023. "A Novel “Finite Element-Meshfree” Triangular Element Based on Partition of Unity for Acoustic Propagation Problems," Mathematics, MDPI, vol. 11(11), pages 1-21, May.
    10. Xi, Qiang & Fu, Zhuojia & Wu, Wenjie & Wang, Hui & Wang, Yong, 2021. "A novel localized collocation solver based on Trefftz basis for potential-based inverse electromyography," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. Tingting Sun & Peng Wang & Guanjun Zhang & Yingbin Chai, 2022. "A Modified Radial Point Interpolation Method (M-RPIM) for Free Vibration Analysis of Two-Dimensional Solids," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    12. Yancheng Li & Sina Dang & Wei Li & Yingbin Chai, 2022. "Free and Forced Vibration Analysis of Two-Dimensional Linear Elastic Solids Using the Finite Element Methods Enriched by Interpolation Cover Functions," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
    13. Jue Qu & Hongjun Xue & Yancheng Li & Yingbin Chai, 2022. "An Enriched Finite Element Method with Appropriate Interpolation Cover Functions for Transient Wave Propagation Dynamic Problems," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    14. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    15. Nikan, O. & Avazzadeh, Z., 2021. "A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319306861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.